
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

DeepGFL: Deep Feature Learning via Graph for 
Attack Detection on Flow-based Network Traffic 

Yepeng Yao1,2, Liya Su1,2, Zhigang Lu1,2† 
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China 
Email: {yaoyepeng, suliya, luzhigang}@iie.ac.cn 

Abstract—The ability to mine structurally complex and latent 
relationship among network flows has become the focus of many 
initiatives. Learning graph representation for network attack 
detection has become a critical issue which is an across-network 
machine learning task. However, the challenge of effectively 
representing graph for network traffic is unmet yet, especially 
for detecting various threat patterns which is modeled as 
attributed graph. In the same time, existing methods could not 
capture higher-order subgraph structures. For these reasons, we 
propose a new way to model network graph called Deep Graph 
Feature Learning (DeepGFL) for network attack detection to 
solve this problem. DeepGFL is a framework studying deep 
features from attributed network flow graph. We automatically 
generalize higher-order features from raw features obtained 
from attributed graphs and then implement network attack 
detection. We evaluate the proposed framework with raw 
features threat detection on a real world datasets. Experimental 
results show that DeepGFL is more effective, more accurate and 
more space efficient for network attack detection. 

Keywords—graph representation, deep graph feature learning, 
feature function, network attack detection, network security 

I. INTRODUCTION  
Large scale IT infrastructures are threatened by an ever-

growing number of different threats. Cyber-attacks usually 
hide communication data in massive legitimate network traffic 
to evade the detection of security devices and achieve the 
purpose of long-term latent and information theft. The current 
existing cyber-attacks, such as the malware, botnet and APT, 
can be classified as such type attacks. Even though network 
level cyber-attack detection is widely studied by the 
community as the first line of defense against cyber threats, 
these attacks are still hard to detect because their network 
activities are subtle and do not cause target network sharp 
fluctuation or disruption in contrast to other attacks [1]. The 
ability to mine structurally complex and latent relationship 
among network flows has become the focus of many initiatives, 
ranging from malware traffic analysis to network intrusion 
detection. These applications often represent the underlying 
network traffic as a graph for various reasons, but most 
importantly for the computational efficiency and scalability 
that graph techniques enable. Due to their wide usages, many 
interesting graph problems are extensively studied, such as 
node embedding and graph kernel. 

However, most of these past works have focused on node 

features. These node features didn’t provide enough useful 
representation of the network flow graph. In addition, existing 
methods are also unable to leverage attributes, methods like 
node embedding are not suitable for attributed graph. For 
example, node2vec can’t treat with network flows and usually 
lose important connected information. 

Learning a useful graph representation has become a 
critical issue in network attack detection as an across-network 
machine learning tasks. In this work, we consider the network 
attack detection problem for attributed network flow graphs, 
which contain different types of hosts and communication 
traffic. The focus of our proposed approach is to present deep 
graph-based method to uncover attacks in network traffic 
containing possible network attack activities. Recall that, raw 
features are not representable enough. 

In this paper, we present a deep graph feature learning 
framework called DeepGFL, which overcomes many of the 
above limitations, to extract higher-order features in the 
context of network security. Our goal is to derive higher-order 
network flow features from lower-order ones forming a 
hierarchical graph representation where each layer consists of 
features of increasingly higher orders. 

The main contributions of our work are as follows: 

 We design a model for extracting higher-order features 
in the context of network security aiming at detecting 
network attacks. 

 We propose a graph-based feature learning algorithm to 
represent the network flow relationships on hosts, and 
perform a feature evaluation routine to choose the 
important features exposing the different patterns 
between benign and attack network flows. 

 We use insights from our measurements to build an 
attack detection prototype, using deep graph features 
learning from network flow graph, and evaluate it on a 
real world dataset. 

To the best of our knowledge, this paper presents the first 
proposal of models, algorithms and analyzers integrated in a 
real attack detection prototype, which may be applicable to 
attributed network flow graphs with high detection accuracy 
and space efficiency.  

The rest of this paper is organized as follows. Section II 
gives an introduction of DeepGFL framework, and points out 
that the purposes of this paper: firstly, extracting higher-order 
features from the raw network flow features; furthermore, 
learning and extracting the hierarchical graph representation 
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from raw flow features and higher-order features; finally 
evaluating and choosing the important features. Section III 
presents the main algorithm towards deep graph feature 
learning in detail.  Section IV describes the prototype of deep 
graph feature for attack detection. Section V presents an 
experimental evaluation on a real world dataset consisting of 
about 3 million network flows. Section VI gives an overview 
of the related work. Section VII concludes the paper and 
discusses the future work. 

II. DESIGN 
To achieve the purpose of long-term latency, traffic 

patterns of some attacks cannot be characterized by only one 
flow, and instead require an aggregation of the related flows’ 
information. For the detection of these attack scenarios, we 
provide brief explanations of the framework of DeepGFL on 
flow-based network traffic in this section. 
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Fig. 1. Overview of the deep graph feature learning (DeepGFL).  

A. Framework Overview 
First, we present the overview of Deep Graph Feature 

Learning (DeepGFL) framework for attack detection. 
Intuitively, the DeepGFL should be a process in which learns 
the deep graph features of network flows and then detects 
attack in network flows. 

In Fig. 1 we give an overview of the complete processing 
chain from deriving raw flow features to obtaining the threat 
detection result. First we describe extracting raw flow features, 
learning deep graph features, feature pruning and feature 
evaluation. And then describe the threat detection system. 

B. Raw flow Features 
The first step of DeepGFL is to derive a set of raw flow 

features using the network traffic flow features and network 
flow graph topology attributes. It should be noted that Deep 
GFL can use an arbitrary set of raw features from network 
flows, and thus it is not limited to the raw features discussed 
below. In the same time, the better the raw features, the better 
DeepGFL learns the deep graph features. For extracting the 
network traffic raw features, we adopted the CIC FlowMeter [8] 
tool, which is a flow based feature extractor and can extract 80 
features from raw network traffic. 

In the second step, to find the best feature set for detecting 
each attack from 80 extracted features, we adopt Random 
Forest Regressor class which calculates the importance of each 
feature in the whole dataset. It achieves the final result by 
multiplying the average standardized mean value of each 
feature split on each class, with the corresponding feature 
importance’s value. Ref [8] shows the selected features and 
corresponding weight of each section.  

As [8] shows, eight raw features are very important for the 
majority of attack scenarios and common enough for other 

feature extract tools include the following: flow duration,  total 
forward packets, total backward packets, total length of 
forward packets, total length of backward packets, flow bytes 
per seconds, flow packets per seconds, down/up ratio. 

For the next step of our analysis, we use the eight raw 
features mentioned above for simplifying the experiment and 
getting the prominent experimental result.  

Observe that DeepGFL naturally supports other raw feature 
sets and many graph properties including efficient/linear-time 
properties such as PageRank. Moreover, fast approximation 
methods with provable bounds can also be used to derive 
features such as the largest clique centered at the neighborhood 
of each graph element (node, edge) in G. 

C. Deep Graph Features Learning 
Given a graph G = <V, E>, we first decompose G into its 

smaller subgraph components [7] and use these features to 
learn deep features. This work derives deep features by using 
feature functions to all node or edge features within subgraphs. 
Importantly, DeepGFL handles multiple types of subgraph 
sizes and features including subgraphs that are 
directed/undirected, typed/heterogeneous, and/or temporal. 
Furthermore, one can also derive such subgraph features 
efficiently by leveraging fast and accurate subgraph estimation 
methods (e.g.,[5][6]). 

DeepGFL has a primary advantage that it can handle the 
attributed graphs. We discuss how to learn a node or edge 
feature-based representation given an initial set of node or edge 
attributes. For learning a node representation, given G and an 
initial set of related node attributes, we simply derive node 
features by applying the set of feature functions to each node 
attribute. Conversely, learning an edge representation, given G 
and an initial set of related edge attributes, we derive edge 
features by applying each feature function o O to the edges 
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of the nodes at either end of the edge. Then the input attributes 
match the type of graph element(node, edge) and simply 
append to the feature matrix X. 

TABLE I.  EXAMPLES OF FEATURE FUNCTIONS 

Functions Definition Representation 

Hadamard ,
j

j
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O S x x  
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Mean 
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 Mean 
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j
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i j
s S
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The feature functions is formulated as 1,..., nO o o . 
Some sample feature functions are provided in TABLE I. Ref 
[3] provides a wide variety of other useful feature functions. 
Composing several feature functions could derive a new 
feature function. The depth of the DeepGFL depends on three 
components including: (1) the initial raw features derived from 
network flows; (2) the set of feature functions; (3) the number 
of times of using feature function operators. Under this 
formulation, each feature vector x0 from x can be written as a 
composition of feature functions applied over the raw features. 
And even more complex feature functions are easily expressed 
as the compositions of different feature functions. Moreover, 
DeepGFL learns higher-order features based on a set of initial 
raw graph features. Although the learning processing is similar 
as Convolutional Neural Networks (CNNs) [4], DeepGFL 
captures higher-order features from lower-order features in 
each successive layer with understandable operators. 
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Fig. 2. Network flow graph with deep graph representation. (a) a subgraph 
example for 100 flows; (b) An intuitive example for an edge e = (SIP,DIP) and 
a feature function o O  

A general and flexible deep feature learning framework for 
DeepGFL is given in Alg. 1, Section III. DeepGFL begins with 
a set of raw features derived from network flows and uses these 
as a basis for learning deeper and more discriminative features 
by increasing complexity. The framework proceeds to learn a 
hierarchical graph representation where each successive layer 
represents increasingly deeper higher-order (edge/node) graph 
functions (due to composition): F1 < F2 < F3... < Fn s.t. if i < j 
then Fj is said to be deeper than Fi. In particular, the feature F2, 
F3,...,Fn are learned as follows (Alg. 1): First, we derive the 
feature layer Fn by searching over the space of graph functions 
that arise from applying the feature function O to each of the 
novel features fi Fn-1 learned in the previous layer. Further, an 
intuitive example is provided in Fig. 2. 

D. Feature Pruning 
The resulting features in layer n are then evaluated. The 

feature evaluation routine chooses the important features 
(feature functions) at each layer n from the space of novel 
feature functions (at depth n) constructed by composing the 
feature function learned in the previous layer n-1. Notice that 
DeepGFL is flexible for the feature evaluation routine 
changing and fine-tuned for different network flow graphs. 

Feature evaluation function is used to select the subset of 
important features. Features are selected as follows: First, we 
calculated the evaluation score of each feature. Next, compare 
the deeper feature score with the threshold value and the raw 
feature score. If the deeper feature score is larger than the both, 
then discards the raw feature. Recall that the feature evaluation 
routine described above is completely interchangeable by 
replacing the evaluation function in DeepGFL framework. The 
detail of the feature evaluation is shown in Section III. 

After pruning the feature layer Fn, the discarded features 
are removed from X and DeepGFL updates the set of features 
by setting nF F F . Next, it increments n and sets 

nF . Finally, we check for convergence: if the stopping 
criterion is not satisfied, then DeepGFL tries to learn an 
additional feature layer. In contrast to node embedding 
methods that output only a node feature matrix X, DeepGFL 
also outputs the feature functions (operators) d 1,..., nO o o  
where each doi O  is a learned feature function of depth d for 
the i-th feature vector xi. Maintaining the feature functions are 
important for transferring the features, but also for interpreting 
them. 

III. DEEP GRAPH FEATURE LEARNING ALGORITHM 
In this section, we describe the deep graph feature learning 

algorithm to perform higher-order representations. 

Algorithm 1 The DeepGFL framework for learning deep 
graph representations from network flow graphs 

Require: a network flow set NF; a set of feature functions 

1,..., nO o o ; an upper bound max on the number of flows to 
construct the flow graph 

Repeat 

Construct flow graph G = <V, E> by less than max 
network flows from NF, then add the raw flow feature 
vectors to X and definitions to F1, set F F1. 

Search the space of features defined by applying feature 
functions to the previous layer features. 

Evaluate the features and feature functions with the 
evaluation method to select a subset. 

Until no new features emerge or the max number of flows 
is handled 

Return X and the set of feature functions O 
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A. Feature Functions for Network Flows 
First we decompose the graph into its smaller subgraph 

components that conclude in/out/total graph elements. 
DeepGFL derives higher-order features by calculating 
in/out/total node or edge features within subgraphs. 
Importantly, DeepGFL handles multiple types of subgraphs 
and features including subgraphs that are directed/undirected, 
typed/heterogeneous, and/or temporal. Furthermore, as for 
large network flow graph one can derive such subgraph 
featurest efficiently by leveraging fast subgraph estimation 
methods. 

The set of feature functions 1,..., nO o o  are composed 
for calculating the higher-order features. For edge feature 
learning we derive edge deeper features for each 
edge ,v u E  as follows:  

 , , , ,v u v u v u v u v uf ff f f f f f f f f ff f f f f f f f ff f f f f f f ,u v uf fv uf f f f f f f, , ,, ,u v u v u v uu v u v u v, , ,, ,, , f ff f f f f f f      (1) 

where v v vf f fvfvf  and , ,v v vf f f  denote the out/in/total 
edge features of v. 

However, our work focuses on learning directed graph 
features and feature functions for network flows. We propose a 
more appropriate way for network flows. As we all known, the 
in edge features of source node and out edge features of 
destination node are more representative for learning, so we 
use v uf fufuf  to learn the higher-order features for network 
flows. 

Finally, check for convergence, DeepGFL tries to learn an 
additional feature layer until satisfied the stopping criterion. 
Learning from experiment, when the layer is larger than 5 the 
features are usually convergent so we set 6 layer number as the 
stopping criterion. 

B. Feature Evaluation for Network Flows 
In this paper, we want to estimate the correlation between 

the lower-order features and higher-order features. So we use 
the Correlation Feature Selection (CFS) measure proposed by 
[2]. The CFS measure considers correlation between a feature 
and a class and inter-correlation between features in the 
meantime. This measure finds the globally optimal subset of 
relevant features which is used successfully in test theory. 

We use the evaluation method proposed by [2], and find the 
subset of features which have the maximum value of Merits(k). 

 1 2

1 2 1 3 1

...

2 ...
k

k

cf cf cf
s

f f f f f f

r r r
Merit k

k r r r
         (2) 

Recall the feature evaluation routine described above is 
completely interchangeable by replacing the evaluation 
function in DeepGFL framework such as Principal Component 
Analysis(PCA), Decision Trees and the Pegasos method [14]. 

IV. ATTACK DETECTION ON NETWORK FLOWS 
In the previous section we identify several features that 

indicate network attack activity. None of these features, taken 
individually, are sufficient for detecting most of the attack in 
our data set. 

In this section, once the deep graph features for the flow 
graphs has been computed, we introduce the first attempt to use 
the flow-based deep graph features for attack detection 
purposes. We therefore build an attack detection prototype that 
employs supervised machine learning techniques for 
automatically selecting the best combination of features to 
separate the benign and attack network flows. Specifically, we 
train two state-of-the-art classifiers to perform the attack 
detection respectively, namely Decision Tree and Random-
Forests. One important advantage of Random-Forests is that 
the variance of the model decreases as the number of trees in 
the forest increases, whereas the bias remains the same. 

V. EVALUATION 
In our experimental study, we conducted experiments to 

test the effectiveness and efficiency of the proposed framework 
in learning deep graph features over network flow graphs. 

A. Experimental Settings 
1) Datasets: We choose CIC-IDS-2017 dataset [8] as our 

experiment dataset, which contains 2,830,743 flows in total. 
This is one of the newest labeled intrusion detection dataset, 
which covers all the eleven necessary criteria with common 
updated attacks such as DDoS, Brute Force, XSS, SQL 
Injection, Infiltration, Port Scan and Botnet. It was not divided 
by the provider into training and test datasets; therefore, we 
divide it into training and test data sets using a ratio of 40% to 
60%. We also removed Heartbleed, Infiltration and SQL 
Injection because the traffic data of these three attack 
scenarios has only less than 100 attack flows, respectively. 

2) Testbed: We implemented a proof-of-concept version 
of our deep graph feature learning framework (see Section III 
and Section IV). Python3, NetworkX1.9 and Sklearn0.19, 
which are run on the Ubuntu 16.04 64-bit OS, are used as the 
software frameworks. The server is a DELL R720 with 16 
CPU cores and 128 GB of memory. 

3) Metrics: For evaluation, we report the precision, recall, 
F1 score and AUC (area under ROC curve) value for each 
network attack scenario. 

B. Experimental Design 
In our experiment, we construct flow graphs of every 1000 

flows for the calculation of deep graph features. The in-edge 
features of source host of flows and out-edge features of 
destination host of flows have been used to learn higher-order 
features. We structured our experiments in three parts: 

Evaluate and compare the effectiveness of the raw 
features, deep graph features, raw features after pruning 
and deep graph features after pruning, then determine 
whether our prototype is able to detect network attacks 
under different detection methods. 
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 Evaluate and compare the performance of four different 
feature functions, respectively. 

 Estimate and analysis the space efficiency of DeepGFL. 

C. Results 
1) Effectiveness of raw features, deep graph features and 

deep graph features after pruning 
Results have shown the effectiveness of DeepGFL for 

attack classification in Fig. 3 and the overall precision, recall 
and F1 are presented in TABLE II.   

 
(a) Decision Tree classifier 

 
(b) Random-Forests classifier 

Fig. 3. Classification accuracy over raw features, deep features, raw features 
after pruning and deep features after pruning. After pruning, only six raw 
features were left, that were flow packets per secends, flow bytes per secends, 
flow duration, total length of backward packets, total length of forward 
packets and total forward packets. 

We focused on four different feature collections that may 
be representative. For each attack, our approach works clearly 
better than other approaches in attack detection. And the worst 
performing over deep features after pruning is always higher 
than 92% when adopts Random-Forests as the classifier. 

2) Performance with different feature functions 
Fig. 4 shows the improvement of attack detection 

performance on the whole dataset when choosing different 
feature functions. We make the following observations: for 
Random-Forests classifier, the Mul and Mean feature functions 
give best performance on average across all attack scenarios 
with an AUC of higher than 93% over all scenarios. 

 
(a) Decision Tree classifier 

 
(b) Random-Forests classifier 

Fig. 4. Variation of AUC against attack scenarios. From this figure, it is clear 
that the performance of DeepGFL is efficient for improving classification 
accuracy over four feature functions. 

TABLE II.  PERFORMANCES OF RANDOM-FORESTS CLASSIFIER OVER RAW FEATURES, DEEP GRAPH FEATURES, RAW FEATURES AFTER PRUNING AND DEEP 
GRAPH FEATURES AFTER PRUNING 

Attack 
Scenarios 

Raw Features Raw Features after Pruning Deep Features Deep Features after Pruning 
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

BENIGN 0.91603 0.98460 0.94908 0.90998 0.98948 0.94807 0.97092 0.98869 0.97973 0.97297 0.99024 0.98153 
Bot 0.99726 0.31434 0.47800 0.94886 0.28843 0.44238 0.92069 0.23057 0.36878 0.91391 0.23834 0.37808 

DDoS 0.40814 0.08332 0.13839 0.40925 0.10042 0.16126 0.74157 0.29342 0.42047 0.75672 0.30240 0.43212 
DoS GoldenEye 0.97913 0.56806 0.71899 0.96417 0.60391 0.74265 0.97507 0.47376 0.63769 0.96306 0.58098 0.72475 

DoS Hulk 0.73086 0.35256 0.47566 0.78313 0.27028 0.40187 0.91114 0.94098 0.92582 0.92629 0.95526 0.94055 
DoS Slowhttptest 0.94971 0.14462 0.25102 0.87708 0.15552 0.26420 0.87679 0.14462 0.24829 0.88235 0.15906 0.26953 

DoS slowloris 0.98563 0.13825 0.24249 0.95501 0.13450 0.23580 0.98069 0.13162 0.23210 0.98768 0.13854 0.24299 
FTP-Patator 0.99176 0.48442 0.65091 0.99178 0.48570 0.65206 0.99564 0.48337 0.65078 0.99476 0.48294 0.65021 

PortScan 0.99219 0.99557 0.99388 0.99150 0.99386 0.99268 0.99194 0.99339 0.99267 0.99305 0.99557 0.99431 
SSH-Patator 0.99769 0.49697 0.66346 0.99475 0.49178 0.65818 0.97364 0.46843 0.63254 0.98904 0.46843 0.63576 
Brute Force 1.00000 0.04075 0.07831 1.00000 0.03971 0.07638 0.95122 0.04075 0.07816 1.00000 0.04284 0.08216 

XSS 1.00000 0.02597 0.05063 1.00000 0.02597 0.05063 1.00000 0.02597 0.05063 1.00000 0.02597 0.05063 
3) Space efficiency 
In all cases, the flow representations learned by DeepGFL 

are extremely sparse and significantly more space-efficient 

than raw features as observed in experiment. Strikingly, 
DeepGFL uses only a fraction of the feature space required by 
existing methods and records the feature functions. In the first 
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experiment, the feature pruning process reduced 2 raw features, 
namely total backward packets and down/up ratio - a 
significant reduction in space by a factor of 25%. 

VI. RELATED WORK 
In this section, we highlight how DeepGFL differs from 

related works. 

A. Graph Feature Based Attack/Anomaly Detection 
Johnson [9] proposes a practical work based on graph 

analytics adopting a new metric that measures the vulnerability 
of a network environment with respect to the risk of privilege 
escalation. However, this work focuses on the proposal of a 
single graph-based metric, that is intended only as a means to 
evaluate the vulnerability of a network to cyber-attacks but 
does not help in detection of cyber-attacks. 

Friedberg [10] proposed an anomaly detection system for 
identifying cyber-attacks from several security logs. Their 
approach requires a huge number of logs that are often 
impractical to obtain, and the output of their proposal may be 
extremely difficult to interpret for a security analyst, since their 
approach is agnostic to the given input. On the other hand, our 
focus on network traffic is more practical, as it detected 
suspicious network activities possibly related to key phases of 
cyber-attacks. 

There are also many examples of cyber-attacks detection 
systems based on graphs [11], and several attempts were made 
to use the NetFlow protocol to detect DoS attacks such as 
Smurf, and worms such as W32.Blaster Worm and Red Worm. 
However, none of them are able to leverage the modeling of 
Netflow based data using property-graphs. 

B. Graph Algorithms in Deep Feature Representation 
Recently, researchers have started to apply deep learning to 

network structure representation learning. Several proposals 
have been made to learn a low-dimensional vector 
representation of individual nodes by considering their 
neighborhood [12]. Learning a deep graph feature 
representation lies at the heart and success of many within-
network and across-network machine learning tasks such as 
node and link classification, anomaly detection, link prediction, 
and many others. Methods capable of learning such 
representations have many advantages over feature engineering 
in terms of cost and effort.  

The success of graph-based machine learning algorithms 
depends largely on data representation. Several proposals have 
been made to learn a low-dimensional vector representation of 
individual nodes by considering their neighborhood. Deep 
learning techniques [13] have also improved graph kernels for 
graph structure learning. These methods focus only on the local 
structure of a graph and graph kernels require expensive 
pairwise comparisons. These works focus on unsupervised 
learning or semi-supervised learning and generating features of 
different nodes in a graph rather than the embedding of the 
edges. 

VII. CONCLUSION 
We proposed DeepGFL, a general and flexible framework 

for extracting deep graph features to distinguish network attack 
flow from benign flow based on the raw features of network 
flow. Each deep graph feature learned by DeepGFL 
corresponds to a composition of feature functions applied over 
the raw flow features. Thus, deep graph features learned by 
DeepGFL are interpretable and naturally generalize for 
network representation learning tasks and suitable for network 
flow graphs. Using this framework, we can detect various of 
network attack scenarios based on deep graph features. 
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