
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

DeepGFL: Deep Feature Learning via Graph for
Attack Detection on Flow-based Network Traffic

Yepeng Yao1,2, Liya Su1,2, Zhigang Lu1,2†
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
Email: {yaoyepeng, suliya, luzhigang}@iie.ac.cn

Abstract—The ability to mine structurally complex and latent
relationship among network flows has become the focus of many
initiatives. Learning graph representation for network attack
detection has become a critical issue which is an across-network
machine learning task. However, the challenge of effectively
representing graph for network traffic is unmet yet, especially
for detecting various threat patterns which is modeled as
attributed graph. In the same time, existing methods could not
capture higher-order subgraph structures. For these reasons, we
propose a new way to model network graph called Deep Graph
Feature Learning (DeepGFL) for network attack detection to
solve this problem. DeepGFL is a framework studying deep
features from attributed network flow graph. We automatically
generalize higher-order features from raw features obtained
from attributed graphs and then implement network attack
detection. We evaluate the proposed framework with raw
features threat detection on a real world datasets. Experimental
results show that DeepGFL is more effective, more accurate and
more space efficient for network attack detection.

Keywords—graph representation, deep graph feature learning,
feature function, network attack detection, network security

I. INTRODUCTION
Large scale IT infrastructures are threatened by an ever-

growing number of different threats. Cyber-attacks usually
hide communication data in massive legitimate network traffic
to evade the detection of security devices and achieve the
purpose of long-term latent and information theft. The current
existing cyber-attacks, such as the malware, botnet and APT,
can be classified as such type attacks. Even though network
level cyber-attack detection is widely studied by the
community as the first line of defense against cyber threats,
these attacks are still hard to detect because their network
activities are subtle and do not cause target network sharp
fluctuation or disruption in contrast to other attacks [1]. The
ability to mine structurally complex and latent relationship
among network flows has become the focus of many initiatives,
ranging from malware traffic analysis to network intrusion
detection. These applications often represent the underlying
network traffic as a graph for various reasons, but most
importantly for the computational efficiency and scalability
that graph techniques enable. Due to their wide usages, many
interesting graph problems are extensively studied, such as
node embedding and graph kernel.

However, most of these past works have focused on node

features. These node features didn’t provide enough useful
representation of the network flow graph. In addition, existing
methods are also unable to leverage attributes, methods like
node embedding are not suitable for attributed graph. For
example, node2vec can’t treat with network flows and usually
lose important connected information.

Learning a useful graph representation has become a
critical issue in network attack detection as an across-network
machine learning tasks. In this work, we consider the network
attack detection problem for attributed network flow graphs,
which contain different types of hosts and communication
traffic. The focus of our proposed approach is to present deep
graph-based method to uncover attacks in network traffic
containing possible network attack activities. Recall that, raw
features are not representable enough.

In this paper, we present a deep graph feature learning
framework called DeepGFL, which overcomes many of the
above limitations, to extract higher-order features in the
context of network security. Our goal is to derive higher-order
network flow features from lower-order ones forming a
hierarchical graph representation where each layer consists of
features of increasingly higher orders.

The main contributions of our work are as follows:

 We design a model for extracting higher-order features
in the context of network security aiming at detecting
network attacks.

 We propose a graph-based feature learning algorithm to
represent the network flow relationships on hosts, and
perform a feature evaluation routine to choose the
important features exposing the different patterns
between benign and attack network flows.

 We use insights from our measurements to build an
attack detection prototype, using deep graph features
learning from network flow graph, and evaluate it on a
real world dataset.

To the best of our knowledge, this paper presents the first
proposal of models, algorithms and analyzers integrated in a
real attack detection prototype, which may be applicable to
attributed network flow graphs with high detection accuracy
and space efficiency.

The rest of this paper is organized as follows. Section II
gives an introduction of DeepGFL framework, and points out
that the purposes of this paper: firstly, extracting higher-order
features from the raw network flow features; furthermore,
learning and extracting the hierarchical graph representation

This work is supported by Natural Science Foundation of China (No.
61702508, No.61602470, No.61572481). This work is also partially supported
by Key Laboratory of Network Assessment Technology, Chinese Academy of
Sciences and Beijing Key Laboratory of Network Security and Protection
Technology.

† Corresponding author.

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

978-1-5386-7185-6/18/$31.00 ©2018 IEEE 579Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2021 at 02:44:26 UTC from IEEE Xplore. Restrictions apply.

from raw flow features and higher-order features; finally
evaluating and choosing the important features. Section III
presents the main algorithm towards deep graph feature
learning in detail. Section IV describes the prototype of deep
graph feature for attack detection. Section V presents an
experimental evaluation on a real world dataset consisting of
about 3 million network flows. Section VI gives an overview
of the related work. Section VII concludes the paper and
discusses the future work.

II. DESIGN
To achieve the purpose of long-term latency, traffic

patterns of some attacks cannot be characterized by only one
flow, and instead require an aggregation of the related flows’
information. For the detection of these attack scenarios, we
provide brief explanations of the framework of DeepGFL on
flow-based network traffic in this section.

Atttack

Benign

Deep Graph Feature Learning (DeepGFL)

Network
Traffic

(Pcap File)

Raw Flow Feature
Extraction

Deep Flow Feature
Learning Feature Evaluation

Network
Attack

Detection

Extracting Raw Features
from raw traffic

[<sip, dip, lf1, lf2, >

<sip, dip, lf1, lf2, >]

1001
1001
01

Learning hierarchical graph
representation from raw and

higher-order features

Choosing the important
features from the space of
novel relational functions

X1
X2

Xn

Xj

Xk

X, F

f1 fn

Xw Xw+1 Xv-1 Xv

*Remove features if score < λ

Fig. 1. Overview of the deep graph feature learning (DeepGFL).

A. Framework Overview
First, we present the overview of Deep Graph Feature

Learning (DeepGFL) framework for attack detection.
Intuitively, the DeepGFL should be a process in which learns
the deep graph features of network flows and then detects
attack in network flows.

In Fig. 1 we give an overview of the complete processing
chain from deriving raw flow features to obtaining the threat
detection result. First we describe extracting raw flow features,
learning deep graph features, feature pruning and feature
evaluation. And then describe the threat detection system.

B. Raw flow Features
The first step of DeepGFL is to derive a set of raw flow

features using the network traffic flow features and network
flow graph topology attributes. It should be noted that Deep
GFL can use an arbitrary set of raw features from network
flows, and thus it is not limited to the raw features discussed
below. In the same time, the better the raw features, the better
DeepGFL learns the deep graph features. For extracting the
network traffic raw features, we adopted the CIC FlowMeter [8]
tool, which is a flow based feature extractor and can extract 80
features from raw network traffic.

In the second step, to find the best feature set for detecting
each attack from 80 extracted features, we adopt Random
Forest Regressor class which calculates the importance of each
feature in the whole dataset. It achieves the final result by
multiplying the average standardized mean value of each
feature split on each class, with the corresponding feature
importance’s value. Ref [8] shows the selected features and
corresponding weight of each section.

As [8] shows, eight raw features are very important for the
majority of attack scenarios and common enough for other

feature extract tools include the following: flow duration, total
forward packets, total backward packets, total length of
forward packets, total length of backward packets, flow bytes
per seconds, flow packets per seconds, down/up ratio.

For the next step of our analysis, we use the eight raw
features mentioned above for simplifying the experiment and
getting the prominent experimental result.

Observe that DeepGFL naturally supports other raw feature
sets and many graph properties including efficient/linear-time
properties such as PageRank. Moreover, fast approximation
methods with provable bounds can also be used to derive
features such as the largest clique centered at the neighborhood
of each graph element (node, edge) in G.

C. Deep Graph Features Learning
Given a graph G = <V, E>, we first decompose G into its

smaller subgraph components [7] and use these features to
learn deep features. This work derives deep features by using
feature functions to all node or edge features within subgraphs.
Importantly, DeepGFL handles multiple types of subgraph
sizes and features including subgraphs that are
directed/undirected, typed/heterogeneous, and/or temporal.
Furthermore, one can also derive such subgraph features
efficiently by leveraging fast and accurate subgraph estimation
methods (e.g.,[5][6]).

DeepGFL has a primary advantage that it can handle the
attributed graphs. We discuss how to learn a node or edge
feature-based representation given an initial set of node or edge
attributes. For learning a node representation, given G and an
initial set of related node attributes, we simply derive node
features by applying the set of feature functions to each node
attribute. Conversely, learning an edge representation, given G
and an initial set of related edge attributes, we derive edge
features by applying each feature function o O to the edges

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

580Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2021 at 02:44:26 UTC from IEEE Xplore. Restrictions apply.

of the nodes at either end of the edge. Then the input attributes
match the type of graph element(node, edge) and simply
append to the feature matrix X.

TABLE I. EXAMPLES OF FEATURE FUNCTIONS

Functions Definition Representation

Hadamard ,
j

j
s S

O S x x
Mul

Mean
1,

j

j
s S

O S x x
S

 Mean

Sum ,
j

j
s S

O S x x
Sum

Weight.Lp ,
j

p

i j
s S

O S x x x Diff

The feature functions is formulated as 1,..., nO o o .
Some sample feature functions are provided in TABLE I. Ref
[3] provides a wide variety of other useful feature functions.
Composing several feature functions could derive a new
feature function. The depth of the DeepGFL depends on three
components including: (1) the initial raw features derived from
network flows; (2) the set of feature functions; (3) the number
of times of using feature function operators. Under this
formulation, each feature vector x0 from x can be written as a
composition of feature functions applied over the raw features.
And even more complex feature functions are easily expressed
as the compositions of different feature functions. Moreover,
DeepGFL learns higher-order features based on a set of initial
raw graph features. Although the learning processing is similar
as Convolutional Neural Networks (CNNs) [4], DeepGFL
captures higher-order features from lower-order features in
each successive layer with understandable operators.

DIPSIP DDIPPS PPS

Xi O(S, x)m

X1

X2

X4

X5

X3

O(S, x)n

(a) (b)

Fig. 2. Network flow graph with deep graph representation. (a) a subgraph
example for 100 flows; (b) An intuitive example for an edge e = (SIP,DIP) and
a feature function o O

A general and flexible deep feature learning framework for
DeepGFL is given in Alg. 1, Section III. DeepGFL begins with
a set of raw features derived from network flows and uses these
as a basis for learning deeper and more discriminative features
by increasing complexity. The framework proceeds to learn a
hierarchical graph representation where each successive layer
represents increasingly deeper higher-order (edge/node) graph
functions (due to composition): F1 < F2 < F3... < Fn s.t. if i < j
then Fj is said to be deeper than Fi. In particular, the feature F2,
F3,...,Fn are learned as follows (Alg. 1): First, we derive the
feature layer Fn by searching over the space of graph functions
that arise from applying the feature function O to each of the
novel features fi Fn-1 learned in the previous layer. Further, an
intuitive example is provided in Fig. 2.

D. Feature Pruning
The resulting features in layer n are then evaluated. The

feature evaluation routine chooses the important features
(feature functions) at each layer n from the space of novel
feature functions (at depth n) constructed by composing the
feature function learned in the previous layer n-1. Notice that
DeepGFL is flexible for the feature evaluation routine
changing and fine-tuned for different network flow graphs.

Feature evaluation function is used to select the subset of
important features. Features are selected as follows: First, we
calculated the evaluation score of each feature. Next, compare
the deeper feature score with the threshold value and the raw
feature score. If the deeper feature score is larger than the both,
then discards the raw feature. Recall that the feature evaluation
routine described above is completely interchangeable by
replacing the evaluation function in DeepGFL framework. The
detail of the feature evaluation is shown in Section III.

After pruning the feature layer Fn, the discarded features
are removed from X and DeepGFL updates the set of features
by setting nF F F . Next, it increments n and sets

nF . Finally, we check for convergence: if the stopping
criterion is not satisfied, then DeepGFL tries to learn an
additional feature layer. In contrast to node embedding
methods that output only a node feature matrix X, DeepGFL
also outputs the feature functions (operators) d 1,..., nO o o
where each doi O is a learned feature function of depth d for
the i-th feature vector xi. Maintaining the feature functions are
important for transferring the features, but also for interpreting
them.

III. DEEP GRAPH FEATURE LEARNING ALGORITHM
In this section, we describe the deep graph feature learning

algorithm to perform higher-order representations.

Algorithm 1 The DeepGFL framework for learning deep
graph representations from network flow graphs

Require: a network flow set NF; a set of feature functions

1,..., nO o o ; an upper bound max on the number of flows to
construct the flow graph

Repeat

Construct flow graph G = <V, E> by less than max
network flows from NF, then add the raw flow feature
vectors to X and definitions to F1, set F F1.

Search the space of features defined by applying feature
functions to the previous layer features.

Evaluate the features and feature functions with the
evaluation method to select a subset.

Until no new features emerge or the max number of flows
is handled

Return X and the set of feature functions O

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

581Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2021 at 02:44:26 UTC from IEEE Xplore. Restrictions apply.

A. Feature Functions for Network Flows
First we decompose the graph into its smaller subgraph

components that conclude in/out/total graph elements.
DeepGFL derives higher-order features by calculating
in/out/total node or edge features within subgraphs.
Importantly, DeepGFL handles multiple types of subgraphs
and features including subgraphs that are directed/undirected,
typed/heterogeneous, and/or temporal. Furthermore, as for
large network flow graph one can derive such subgraph
featurest efficiently by leveraging fast subgraph estimation
methods.

The set of feature functions 1,..., nO o o are composed
for calculating the higher-order features. For edge feature
learning we derive edge deeper features for each
edge ,v u E as follows:

 , , , ,v u v u v u v u v uf ff f f f f f f f f ff f f f f f f f ff f f f f f f ,u v uf fv uf f f f f f f, , ,, ,u v u v u v uu v u v u v, , ,, ,, , f ff f f f f f f (1)

where v v vf f fvfvf and , ,v v vf f f denote the out/in/total
edge features of v.

However, our work focuses on learning directed graph
features and feature functions for network flows. We propose a
more appropriate way for network flows. As we all known, the
in edge features of source node and out edge features of
destination node are more representative for learning, so we
use v uf fufuf to learn the higher-order features for network
flows.

Finally, check for convergence, DeepGFL tries to learn an
additional feature layer until satisfied the stopping criterion.
Learning from experiment, when the layer is larger than 5 the
features are usually convergent so we set 6 layer number as the
stopping criterion.

B. Feature Evaluation for Network Flows
In this paper, we want to estimate the correlation between

the lower-order features and higher-order features. So we use
the Correlation Feature Selection (CFS) measure proposed by
[2]. The CFS measure considers correlation between a feature
and a class and inter-correlation between features in the
meantime. This measure finds the globally optimal subset of
relevant features which is used successfully in test theory.

We use the evaluation method proposed by [2], and find the
subset of features which have the maximum value of Merits(k).

 1 2

1 2 1 3 1

...

2 ...
k

k

cf cf cf
s

f f f f f f

r r r
Merit k

k r r r
 (2)

Recall the feature evaluation routine described above is
completely interchangeable by replacing the evaluation
function in DeepGFL framework such as Principal Component
Analysis(PCA), Decision Trees and the Pegasos method [14].

IV. ATTACK DETECTION ON NETWORK FLOWS
In the previous section we identify several features that

indicate network attack activity. None of these features, taken
individually, are sufficient for detecting most of the attack in
our data set.

In this section, once the deep graph features for the flow
graphs has been computed, we introduce the first attempt to use
the flow-based deep graph features for attack detection
purposes. We therefore build an attack detection prototype that
employs supervised machine learning techniques for
automatically selecting the best combination of features to
separate the benign and attack network flows. Specifically, we
train two state-of-the-art classifiers to perform the attack
detection respectively, namely Decision Tree and Random-
Forests. One important advantage of Random-Forests is that
the variance of the model decreases as the number of trees in
the forest increases, whereas the bias remains the same.

V. EVALUATION
In our experimental study, we conducted experiments to

test the effectiveness and efficiency of the proposed framework
in learning deep graph features over network flow graphs.

A. Experimental Settings
1) Datasets: We choose CIC-IDS-2017 dataset [8] as our

experiment dataset, which contains 2,830,743 flows in total.
This is one of the newest labeled intrusion detection dataset,
which covers all the eleven necessary criteria with common
updated attacks such as DDoS, Brute Force, XSS, SQL
Injection, Infiltration, Port Scan and Botnet. It was not divided
by the provider into training and test datasets; therefore, we
divide it into training and test data sets using a ratio of 40% to
60%. We also removed Heartbleed, Infiltration and SQL
Injection because the traffic data of these three attack
scenarios has only less than 100 attack flows, respectively.

2) Testbed: We implemented a proof-of-concept version
of our deep graph feature learning framework (see Section III
and Section IV). Python3, NetworkX1.9 and Sklearn0.19,
which are run on the Ubuntu 16.04 64-bit OS, are used as the
software frameworks. The server is a DELL R720 with 16
CPU cores and 128 GB of memory.

3) Metrics: For evaluation, we report the precision, recall,
F1 score and AUC (area under ROC curve) value for each
network attack scenario.

B. Experimental Design
In our experiment, we construct flow graphs of every 1000

flows for the calculation of deep graph features. The in-edge
features of source host of flows and out-edge features of
destination host of flows have been used to learn higher-order
features. We structured our experiments in three parts:

Evaluate and compare the effectiveness of the raw
features, deep graph features, raw features after pruning
and deep graph features after pruning, then determine
whether our prototype is able to detect network attacks
under different detection methods.

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

582Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2021 at 02:44:26 UTC from IEEE Xplore. Restrictions apply.

 Evaluate and compare the performance of four different
feature functions, respectively.

 Estimate and analysis the space efficiency of DeepGFL.

C. Results
1) Effectiveness of raw features, deep graph features and

deep graph features after pruning
Results have shown the effectiveness of DeepGFL for

attack classification in Fig. 3 and the overall precision, recall
and F1 are presented in TABLE II.

(a) Decision Tree classifier

(b) Random-Forests classifier

Fig. 3. Classification accuracy over raw features, deep features, raw features
after pruning and deep features after pruning. After pruning, only six raw
features were left, that were flow packets per secends, flow bytes per secends,
flow duration, total length of backward packets, total length of forward
packets and total forward packets.

We focused on four different feature collections that may
be representative. For each attack, our approach works clearly
better than other approaches in attack detection. And the worst
performing over deep features after pruning is always higher
than 92% when adopts Random-Forests as the classifier.

2) Performance with different feature functions
Fig. 4 shows the improvement of attack detection

performance on the whole dataset when choosing different
feature functions. We make the following observations: for
Random-Forests classifier, the Mul and Mean feature functions
give best performance on average across all attack scenarios
with an AUC of higher than 93% over all scenarios.

(a) Decision Tree classifier

(b) Random-Forests classifier

Fig. 4. Variation of AUC against attack scenarios. From this figure, it is clear
that the performance of DeepGFL is efficient for improving classification
accuracy over four feature functions.

TABLE II. PERFORMANCES OF RANDOM-FORESTS CLASSIFIER OVER RAW FEATURES, DEEP GRAPH FEATURES, RAW FEATURES AFTER PRUNING AND DEEP
GRAPH FEATURES AFTER PRUNING

Attack
Scenarios

Raw Features Raw Features after Pruning Deep Features Deep Features after Pruning
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BENIGN 0.91603 0.98460 0.94908 0.90998 0.98948 0.94807 0.97092 0.98869 0.97973 0.97297 0.99024 0.98153
Bot 0.99726 0.31434 0.47800 0.94886 0.28843 0.44238 0.92069 0.23057 0.36878 0.91391 0.23834 0.37808

DDoS 0.40814 0.08332 0.13839 0.40925 0.10042 0.16126 0.74157 0.29342 0.42047 0.75672 0.30240 0.43212
DoS GoldenEye 0.97913 0.56806 0.71899 0.96417 0.60391 0.74265 0.97507 0.47376 0.63769 0.96306 0.58098 0.72475

DoS Hulk 0.73086 0.35256 0.47566 0.78313 0.27028 0.40187 0.91114 0.94098 0.92582 0.92629 0.95526 0.94055
DoS Slowhttptest 0.94971 0.14462 0.25102 0.87708 0.15552 0.26420 0.87679 0.14462 0.24829 0.88235 0.15906 0.26953

DoS slowloris 0.98563 0.13825 0.24249 0.95501 0.13450 0.23580 0.98069 0.13162 0.23210 0.98768 0.13854 0.24299
FTP-Patator 0.99176 0.48442 0.65091 0.99178 0.48570 0.65206 0.99564 0.48337 0.65078 0.99476 0.48294 0.65021

PortScan 0.99219 0.99557 0.99388 0.99150 0.99386 0.99268 0.99194 0.99339 0.99267 0.99305 0.99557 0.99431
SSH-Patator 0.99769 0.49697 0.66346 0.99475 0.49178 0.65818 0.97364 0.46843 0.63254 0.98904 0.46843 0.63576
Brute Force 1.00000 0.04075 0.07831 1.00000 0.03971 0.07638 0.95122 0.04075 0.07816 1.00000 0.04284 0.08216

XSS 1.00000 0.02597 0.05063 1.00000 0.02597 0.05063 1.00000 0.02597 0.05063 1.00000 0.02597 0.05063
3) Space efficiency
In all cases, the flow representations learned by DeepGFL

are extremely sparse and significantly more space-efficient

than raw features as observed in experiment. Strikingly,
DeepGFL uses only a fraction of the feature space required by
existing methods and records the feature functions. In the first

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

583Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2021 at 02:44:26 UTC from IEEE Xplore. Restrictions apply.

experiment, the feature pruning process reduced 2 raw features,
namely total backward packets and down/up ratio - a
significant reduction in space by a factor of 25%.

VI. RELATED WORK
In this section, we highlight how DeepGFL differs from

related works.

A. Graph Feature Based Attack/Anomaly Detection
Johnson [9] proposes a practical work based on graph

analytics adopting a new metric that measures the vulnerability
of a network environment with respect to the risk of privilege
escalation. However, this work focuses on the proposal of a
single graph-based metric, that is intended only as a means to
evaluate the vulnerability of a network to cyber-attacks but
does not help in detection of cyber-attacks.

Friedberg [10] proposed an anomaly detection system for
identifying cyber-attacks from several security logs. Their
approach requires a huge number of logs that are often
impractical to obtain, and the output of their proposal may be
extremely difficult to interpret for a security analyst, since their
approach is agnostic to the given input. On the other hand, our
focus on network traffic is more practical, as it detected
suspicious network activities possibly related to key phases of
cyber-attacks.

There are also many examples of cyber-attacks detection
systems based on graphs [11], and several attempts were made
to use the NetFlow protocol to detect DoS attacks such as
Smurf, and worms such as W32.Blaster Worm and Red Worm.
However, none of them are able to leverage the modeling of
Netflow based data using property-graphs.

B. Graph Algorithms in Deep Feature Representation
Recently, researchers have started to apply deep learning to

network structure representation learning. Several proposals
have been made to learn a low-dimensional vector
representation of individual nodes by considering their
neighborhood [12]. Learning a deep graph feature
representation lies at the heart and success of many within-
network and across-network machine learning tasks such as
node and link classification, anomaly detection, link prediction,
and many others. Methods capable of learning such
representations have many advantages over feature engineering
in terms of cost and effort.

The success of graph-based machine learning algorithms
depends largely on data representation. Several proposals have
been made to learn a low-dimensional vector representation of
individual nodes by considering their neighborhood. Deep
learning techniques [13] have also improved graph kernels for
graph structure learning. These methods focus only on the local
structure of a graph and graph kernels require expensive
pairwise comparisons. These works focus on unsupervised
learning or semi-supervised learning and generating features of
different nodes in a graph rather than the embedding of the
edges.

VII. CONCLUSION
We proposed DeepGFL, a general and flexible framework

for extracting deep graph features to distinguish network attack
flow from benign flow based on the raw features of network
flow. Each deep graph feature learned by DeepGFL
corresponds to a composition of feature functions applied over
the raw flow features. Thus, deep graph features learned by
DeepGFL are interpretable and naturally generalize for
network representation learning tasks and suitable for network
flow graphs. Using this framework, we can detect various of
network attack scenarios based on deep graph features.

ACKNOWLEDGMENTS
The authors would like to thank Bo Jiang, Mingyi Chen

and Baoxu Liu for their helpful comments on this paper and the
anonymous referees for their valuable comments and
corrections. This research was supported by the Natural
Science Foundation of China (No. 61702508, No.61602470,
No.61572481).

REFERENCES
[1] Nasr M, Houmansadr A, Mazumdar A. Compressive Traffic Analysis: A

New Paradigm for Scalable Traffic Analysis[C]//Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017: 2053-2069.

[2] Nguyen H, Franke K, Petrovic S. Improving effectiveness of intrusion
detection by correlation feature selection[C]//Availability, Reliability,
and Security, 2010. ARES'10 International Conference on. IEEE, 2010:
17-24.

[3] Rossi R A, Zhou R, Ahmed N K. Deep feature learning for graphs[J].
arXiv preprint arXiv:1704.08829, 2017.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[5] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Estimation of graphlet
statistics,” in arXiv preprint, 2017, pp. 1–14.

[6] N. K. Ahmed, T. L. Willke, and R. A. Rossi, “Estimation of local
subgraph counts,” in IEEE BigData, 2016, pp. 586–595.

[7] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient
graphlet counting for large networks,” in ICDM, 2015, p. 10.

[8] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani,
“Toward Generating a New Intrusion Detection Dataset and Intrusion
Traffic Characterization”, 4th International Conference on Information
Systems Security and Privacy (ICISSP), Purtogal, January 2018.

[9] Johnson J R, Hogan E A. A graph analytic metric for mitigating
advanced persistent threat[C]//Intelligence and Security Informatics
(ISI), 2013 IEEE International Conference on. IEEE, 2013: 129-133.

[10] Friedberg I, Skopik F, Settanni G, et al. Combating advanced persistent
threats: From network event correlation to incident detection[J].
Computers & Security, 2015, 48: 35-57.

[11] E. Bou-Harb and M. Scanlon, “Behavioral service graphs: A formal
data-driven approach for prompt investigation of enterprise and internet-
wide infections,” Digital Investigation, vol. 20, pp. S47–S55, 2017.

[12] A. Grover and J. Leskovec. node2vec: Scalable feature learning for
networks. In Proc. of SIGKDD, 2016.

[13] Yanardag P, Vishwanathan S V N. Deep graph kernels[C]//Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015: 1365-1374.

[14] Shalev-Shwartz S, Singer Y, Srebro N, et al. Pegasos: Primal estimated
sub-gradient solver for svm[J]. Mathematical programming, 2011,
127(1): 3-30.

Milcom 2018 Track 3 - Cyber Security and Trusted Computing

584Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2021 at 02:44:26 UTC from IEEE Xplore. Restrictions apply.

