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Abstract

The popularity of Ethereum decentralized applications

(Dapps) also brings in new security risks: it has been re-

ported that these Dapps have been under various kinds of

attacks from cybercriminals to gain profit. To the best of

our knowledge, little has been done so far to understand this

new cybercrime, in terms of its scope, criminal footprints

and attack operational intents, not to mention any efforts to

investigate these attack incidents automatically on a large

scale. In this paper, we performed the first measurement study

on real-world Dapp attack instances to recover critical threat

intelligence (e.g., kill chain and attack patterns). Utilizing

such threat intelligence, we proposed the first technique DE-

FIER to automatically investigate attack incidents on a large

scale. Running DEFIER on 2.3 million transactions from 104

Ethereum on-chain Dapps, we were able to identify 476,342

exploit transactions on 85 target Dapps, which related to 75

0-day victim Dapps and 17K previously-unknown attacker

EOAs. To the best of our knowledge, it is the largest Ethereum

on-chain Dapp attack incidents dataset ever reported.

1 Introduction

The rise of blockchain technologies has profoundly trans-

formed computing, bringing to the front a new type of de-

centralized applications on blockchain that facilitate transfer

of values across users without a third party. Such applica-

tions, dubbed Dapp, have already been widely deployed on

Ethereum to provide services ranging from cryptocurrency

management to voting and governance [17]. Online statistics

show that till Nov. 5, 2019, 3,137 Dapps on Ethereum are

serving 63.77K active users every day through over one mil-

lion transactions that involve 7.55 million USD [2]. However,

the boundless potentials Dapps have opened also come with

new security risks. It has been reported that cybercriminals

have fixed their gaze on Dapps and exploits on them, particu-

larly their blockchain back-end (i.e., smart contracts, see Sec-

tion 2), happening from time to time. A prominent example is
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the DAO attack that caused a loss over 50 million USD [39]

in 2016, resulting in the hard-fork in Ethereum. Also found in

our study is that miscreants took 14K Ethers from the victim

Dapps with most financial losses (i.e., Fomo3D, Section 4.5).

With this significant threat, the community’s understanding

about the new type of cybercrimes is still very limited: to

the best of our knowledge, no extensive forensic analysis

on Dapp attacks has ever been reported, nor has any cyber

threat intelligence (CTI) been collected from them to find out

the perpetrator’s strategy, capability and infrastructure, not to

mention to utilize the knowledge to mitigate the threat.

Understanding attacks on Dapps. In this paper, we present

the first study that analyzes and measures real-world at-

tacks on Ethereum Dapps based upon the forensic evidence

recorded on the blockchain, which brings new insights to this

emerging cybercrime. Our research leverages the informa-

tion logged by the Ethereum blockchain, an open, immutable

ledger recording the entire history of interactions between

Dapps and their users through their Ethereum user accounts

(i.e., Externally Owned Accounts or EOA, see Section 2).

Such interactions are performed through transactions, which

are logged in the data packages chained by Ethereum. Should

a Dapp be exploited, all forensic evidence, such as attack

traces, will be kept in related transactions, which can later be

used to analyze the attack.

However, it is nontrivial to identify attack traces from over

350 million Ethereum transactions. Finding related transac-

tions from published reports is inadequate at best, since they

tend to miss information about important actors and exploit

behaviors (such as exploit developers, Section 4), when their

EOAs are not included in the reports. Also absent are detailed

internal operations triggered by each transaction, in terms of

function calls between the target Dapps and EOAs or between

different EOAs (see Section 4). Such calls describe these par-

ties’ behaviors and are found to be critical for determining

their intents during the interactions. To address these chal-

lenges, we come up with a methodology that utilizes known

attack-related transactions (called exploit transactions in the

paper) and EOAs to find new ones and further analyze their ex-

ecution traces (by re-executing these transactions). In this way,

utilizing 25 Dapps related to 42 known attack incidents, we

identified 58,555 exploit transactions with 436,371 execution



traces, all linked to 56 Dapps, including 29 being exploited

but never reported before (called 0-day victim Dapps).

Our findings. From the transactions collected, our forensic

analysis has recovered critical CTI about strategically, well

organized Dapp attacks, which have never been done before.

Such threat information (CTI) provides invaluable insights

for understanding the strategies, approaches and intentions of

real-world cybercriminals in attacking Dapps, and thus con-

tributes to mitigating the emerging threats. Most interesting

is the discovery about how the adversary systematically or-

chestrates an attack. More specifically, across different kinds

of exploits (weak randomness exploit, denial of services, inte-

ger overflow, reentrancy and authentication circumvention)

against different Dapps, we can see a general attack lifecycle

with four stages from the transaction sequences involved: at-

tack preparation, exploitation, propagation and completion.

These stages form a kill chain against Dapps, which has never

been reported before. The chain starts with repeated attempts

to probe the target Dapp from various sources for finding and

testing its vulnerable functions. That is, the adversary tests,

debugs the attack code to ensure it can successfully exploit

the particular target Dapp. This stage is followed by a series

of exploit transactions to profit from the target, which are con-

tinuously refined to improve efficiency. After that, the same

attack is often replayed to similar Dapps, with a sequence of

transactions produced to aim at different targets. The attack

is finalized with another sequence of transactions for termi-

nating attack contracts and transferring stolen funds. Across

different attack instances against real-world Dapps, this life-

cycle paradigm exhibits remarkable consistency, with each

stage characterized by a time series of similar, inter-dependent

transactions executed consecutively within a short time win-

dow. The series describes the adversary’s behaviors and thus

characterizes his intent at each stage. For example, continuous

probing transactions show the intent of finding weaknesses in

a target Dapp.

Further, our research reveals a hierarchical attack infras-

tructure with multiple roles working together to execute dif-

ferent types of exploits. These roles include exploit devel-

oper (testing an attack on vulnerable functions/Dapps), attack

operator (executing an exploit through attack transactions),

money mule (helping profit/attack cost transfers through an

anonymity channel [18]) and money manager (managing prof-

it/cost transfers). Each of them has well-defined tasks and

therefore behaves similarly across different attack types and

instances. This again makes their execution traces exhibit

some level of homogeneity at each attack stage.

Extended attack discovery and investigation. The CTI

(e.g., kill chain and operational intents) recovered in our study

can potentially lead to the exposure of unknown threats to

Dapps. To understand the values of our findings, we designed

an exploit discovery methodology, called DEFIER (Dapp Ex-

ploit Investigator), to find more attack instances, particularly

those never reported, so as to gain more insights into real-

world attacks on Dapps. DEFIER captures the adversary’s

strategies and intents, as demonstrated by the operations trig-

gered by the transaction time series at each stage. Given a

Dapp, our approach first gathers all its transactions recorded

on the blockchain and from them, further finds out other re-

lated transactions and EOAs. All these transactions are then

clustered based upon the similarity of their execution traces

in a graph form and organized into several time series. Af-

ter converting the execution traces of each transaction into a

vector through graph embedding, we run a Long Short-Term

Memory (LSTM) neural network to classify each time series,

which determines not only whether the series is related to an

exploit, but also its attack stage when it is.

Running DEFIER on 104 Dapps, we were able to dis-

cover 476,342 exploit transactions on 85 target (with a micro-

precision of 91.7%). In particular, DEFIER reported 75 0-day

victim Dapps (e.g., SpaceWar and SuperCard). Also surpris-

ingly, our study shows that a substantial portion (i.e., 26%)

of the transactions of these Dapps (on Ethereum) are attack-

related: e.g., 30% of Fomo3D’s transactions are attack-related

(from July 2018 to April 2019). This provides evidence that

indeed the attack lifecycle we discovered is general. Such

an attack lifecycle discovery tool can potentially be used to

disrupt exploits, sometimes even before damages are inflicted

(e.g., finding and stopping an attack at its preparation stage).

Contribution. The contributions of the paper are as follows:

• We performed the first measurement study and forensic anal-

ysis on real-world Dapp attacks, leveraging the open and im-

mutable transaction records kept by the Ethereum blockchain

to recover critical CTI. Particularly, our study has led to the

discovery of a general, unique lifecycle of Dapp attacks, with

the adversary showing similar behaviors in orchestrating at-

tack operations against different target Dapps, regardless of

low-level exploit techniques. Also we brought to light the ad-

versary’s attack infrastructures, campaigns they organized, as

well as the inadequacy of the current response by defenders.

• We demonstrate that our new understanding and CTI dis-

covered can help mitigate the threat to Dapps, using a new

methodology developed for finding new attacks at different

stages. Our approach leverages the similarity of attack behav-

iors exhibited by the transaction time series, which allows us

to accurately capture both known and unknown attacks. This

study shows that our findings could be leveraged to build a

protection system down the road, to disrupt an exploit even

before any damage has been caused.

2 Background

2.1 Ethereum and smart contract

Ethereum is a public blockchain-based distributed computing

platform and operating system featuring scripting functional-

ity. On the platform, there are two types of accounts: Exter-



nally Owned Accounts (EOAs) controlled by private keys (rep-

resenting persons or external servers), and Contract Accounts

controlled by code, which are known as smart contracts. The

Ethereum blockchain [49] is the most prominent framework

for smart contracts, where over 1 million contracts have been

deployed [11].

Transaction. During its operations, the Ethereum blockchain

tracks every account’s state: once value has been transferred

between accounts, the blockchain’s state is also changed ac-

cordingly [27], which is recorded in a transaction. A trans-

action is a signed data package storing a message to be sent

from an EOA to another account, which carries the follow-

ing information: to (the recipient), from (sender’s signature),

value (the amount of money transferred from the sender to

the recipient), data (the input for a contract), gasprice (the

fee required to successfully conduct a transaction, i.e., gas,

which is paid by the sender), etc. In Ethereum, all transactions

are written onto a cryptographically-verified ledger [49], with

a copy kept by every Ethereum client.

There are three types of transactions supported on

Ethereum: Ether transfer, and contract call, contract cre-

ation [48]. The type of transactions can be determined based

on the transaction format: an Ether transfer transaction trans-

fers between two parties the amount of Ether as indicated by

its value field; The contract call transaction is used to interact

with an existing smart contract, with its data field specifying

the method to call (e.g., the methodID of run() or kill()) and

call arguments, and its value field carrying the amount of

Ether to deposit in the contract (if the contract accepts Ether).

A contract creation transaction has its to field set to empty,

and its input data field contains the bytecode of the contract.

A typical bytecode is composed of the creation code, runtime

code and swarm code, where the creation code determines the

initial states of the contract, the runtime code indicates the

functionality of the contract, and the swarm code is used for

the deployment consistency proof and not for execution pur-

pose. Typically, the creation code ends with the operation se-

quence: PUSH 0x00, RETURN, STOP, 0x6000f3000, and

the swarm code begins with LOG1 PUSH 6 in bytecode. This

can be used to split the bytecode and identify the runtime code.

In our research, we leveraged the contract creation transaction

to recover the runtime code of the self-destructed contracts

(Section 3.1).

Each executed transaction creates a receipt, keeping

track of such information as the created contract address

(contractAddress, as shown in Appendix Figure 11(e)) and

the transaction execution status (0 for failure and 1 for success,

as shown in the status field).

Smart contract concept and execution. A smart contract is

used to facilitate, verify, and enforce the negotiation or perfor-

mance of an agreement. As mentioned earlier, on Ethereum,

such a contract can be created, executed and destructed by

a transaction issued by an account. On reception of a trans-
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Figure 1: Example of transaction execution traces. #: exploit

contract, �: contract generated in execution,  : Dapp, 3:

EOA.

action, a contract is run by the Ethereum Virtual Machine

(EVM) on every node in the network. During the execution,

the contract may communicate internally with other EOAs

and contracts. Note that, to understand what data has been

modified or what external contracts have been invoked, the

transaction execution needs to be traced via re-executing a

transaction under all historical states it accesses.

Figure 1 illustrates the execution traces (➊-➒) of a contract-

call transaction, which is sent from 0x73* to call the function

execute() of the contract 0x54* with a 0.01 ETH transfer.

The transaction has triggered a set of execution traces, such

as an internal call airDropPot_() from 0x54* to 0xa6* (➋),

followed by another call to airDropTracker_() from 0x54* to

0xa6* (➌).

In our research, we model the set of the transaction’s

execution traces et at time t as a sequence of 4-tuples

(I,O,B,T ), i.e., e = {(Ii,Oi,Bi,Ti)|i = 1...n}, where Ii is the

address triggering the behavior Bi (the function invoked and

its parameters) on the recipient address Oi, together with a

money transfer Ti (a transaction field recording the Ethers

transferred from the issuer of the transaction to its recipient)

at the step i.

In our study, we collected 11,960,145 execution traces

of 2,350,779 transactions from Bloxy [13], and further con-

structed a directed and weighted graph for transaction analysis

(Section 3).

2.2 Ethereum Dapps

Ethereum Dapps are public de-centralized applications that

interact with the Ethereum blockchain, providing services

such as gambling, online voting, token system, cryptocurrency

exchange, etc. Such an application utilizes a set of smart

contracts as its on-chain back-ends, for the purposes such

as encoding task logic and maintaining persistent storage

of its consensus-critical states [17], while also contains off-

chain components such as its front-end (e.g., a website) for

communicating with users. As an example, the Ethereum

Dapp Fomo3D, a lottery game, is powered by a smart contract

that handles the transactions for different actions, like buying

keys, withdrawing from vault, picking a vanity name, etc.

Note that in addition to acting as the back-end of a Dapp,



a smart contract can serve other purposes such as offering

an on-chain library, and is also used to call a Dapp. In our

research, we focus on the on-chain threats to the Dapp’s back-

end, a set of related contracts supporting the service of the

application. These contracts are invoked by EOAs through

other contracts or transactions. Below we also use the term

“Dapp” to refer to the back-end smart contract(s) of a Dapp.

In our study, to identify Dapp among smart contracts, we

utilize Dapp aggregation website [1] to recognize the Dapp

names with their corresponding contract addresses and cate-

gories (e.g., gambling, game, finance, exchange). In this way,

we identify 1,169 Dapps with 5,786 contract addresses and

18 categories. Note that Ethereum does not distinguish Dapp

contract and non-Dapp contract naturally: if a Dapp has never

been recorded by those websites, we cannot build the Dapp

name-contract mapping.

Attacks on Dapps. As the largest Dapps market, Ethereum

has seen quite a few high-impact real-world attacks on

Dapps [36], resulting in losses of millions of dollars. Table 1

lists the types of attacks ever reported from 2016 to 2019 and

the number of attack incidents. In our study, we utilize these

published reports as seed to recover critical CTI on Ethereum

Dapp attacks.

Here we present a real-world example of the Ethereum

Dapp attack that exploits a weak randomness vulnerability

in the airdrop() method of Fomo3D (see Table 1) for profit.

Fomo3D is a highly-popular Ethereum gambling game with

over 150,000 transactions a day and a prize pool of around $3

million in 2018 [42]. In the game, a player has a chance to win

a prize from the airdrop pot airDropPot_ when purchasing

keys through buyXid(). More specifically, when buyXid() is

being called, the Dapp first runs isHuman() to ensure that

the caller is an EOA, not a contract, and then produces a ran-

dom number through the pseudo-random number generator

(PRNG) airdrop() to determine whether the player wins. The

airdrop() method utilizes the parameters airDropTracker_,

message sender address and block information (e.g., times-

tamp, difficulty, gaslimit, number, etc.) for generating pseudo-

random number. During the attack, as shown in the execution

traces of the exploit transaction in Figure 1, the attacker cre-

ates multiple contracts, e.g., 0xf7*(➎), from different message

sender addresses. Since these contracts can get all parame-

ters of the PRNG, they can implement their own airdrop()
to find out whether they will win, and only the winning con-

tract, e.g., 0xf7* (➑), purchases a key (➏). After that, the

contract runs suicide() to transfer the prize to the attacker

0x73* (➒). Note that this attack circumvents the protection

of isHuman(), buying a key through a contract instead of an

EOA. This is because the implementation of isHuman() de-

termines whether an address is an EOA or a contract from the

size of the code associated with the address. This is unreliable

since the contract under construction [40] could bypass the

restriction (➍➎). We elaborate on this attack in Section 3.

2.3 Threat Model

In our research, we consider miscreants who launch attacks

on Ethereum Dapps for profit. For this purpose, the miscre-

ants could conduct several types of attacks on Dapps’ con-

tract vulnerabilities, such as exploiting weak randomness of

a pseudo-random number generator (PRNG) in a gambling

Dapp to win a prize, or performing integer overflow/underflow

to manipulate money transfer, etc. We did not consider the

attack in which the miscreants utilize a single EOA address to

generate a single exploit transaction during the attack, which

though possible, is rare in the wild (see Section 3).

3 Understanding Dapp Attacks in the Wild

In our analysis of Dapp attacks, we leveraged a variety of

vantage points, including historical transactions and transac-

tion execution traces, to reconstruct real-world Dapp attack

incidents. Given the comprehensive transactions and their ex-

ecution traces for each attack incident, we aim at identifying

adversaries’ end-to-end footprints and understanding their

operational intents. Below we first describe the methodology

we used to reconstruct the attack, and then elaborate on our

findings and their security implications.

3.1 Data Collection and Derivation

Here we elaborate the design and implementation of a method-

ology that extends limited information collected from tech-

nical blogs and reports to tens of thousands of transactions

related to Ethereum Dapp attack incidents (i.e., exploit trans-

actions), and further analyzes the attack operations from these

transactions. More specifically, our approach first reconstructs

real-world Ethereum Dapp attack incidents, as documented

by technical blogs, news posts, and the security reports from

blockchain security companies, by recovering all transactions

issued by attacker EOAs or exploit contracts, even when the

transactions are not publicly disclosed. Then, to understand

attack operations related to the exploit transactions, we model

their fine-grained execution behaviors using their execution

traces, and further determine their coarse-grained operational

semantics by clustering the exploit transactions based upon

the similarity and timings of their execution traces.

Exploit transaction collection. We first searched the Inter-

net to collect real-world Ethereum Dapp attack incidents. In

particular, we investigate three types of incident reporting

sources, including technical blogs, news posts, and annual

security reports from blockchain security companies. From

these sources, we further manually picked out those related

to Ethereum Dapp attacks. Details of these incident reports

are presented in Table 14 in Appendix. Then, we reviewed

these incident reports to identify immutable attack-related

information (in the following called the seed attack set Ds),

including victim Dapp addresses, exploit contract addresses,

attacker EOAs, and exploit transaction hashes. In this way, we



Table 1: Real-world Dapp attacks
Attack type Definition # attack incidents

Bad randomness
adversary predicts the random value produced by the Dapp running a weak

pseudo-random number generator (PRNG) to gain advantage (e.g., in a game)
6

Denial of service

adversary seeks to prevent legitimate invocations of a smart contract, through

exhaustion of gas (constrained by block gas limit [41]) or improper check of

exceptional conditions [47]

4

Integer overflow and underflow
an incorrect arithmetic operation that causes its result to exceed the maximum

size of the integer type or go below its minimum value that can be represented
26

Reentrancy attack
a contract calls an external contract that unexpectedly calls back to the calling

contract, rendering it operate in an inconsistent internal state [37]
2

Improper authentication

adversary exploits the authentication process that a Dapp uses to verify the

ownership of resources, to enforce a behavioral workflow or to access a variable.

It could be caused by typographical errors in contract implementation or missing

protection on critical variables

15

Table 2: Known Dapp attacks. Ds is the set of data collected from the reports, and De includes those derived.
Attack type # of Dapps # of exploit contracts # of attacker EOAs # of attack transactions

Ds De Ds De Ds De Ds De

Bad randomness 4 14 9 19 9 27 14 40,766

DoS 4 6 3 3 5 88 4 17,088

Integer overflow/underflow 13 32 1 2 28 53 47 591

Reentrancy 2 2 2 3 2 4 2 30

Improper authentication 12 18 6 18 17 60 34 575

Unique total 25 56 20 45 48 227 77 58,555

identified 42 Dapp attack incidents from 2016 to 2018, which

consist of 25 victim Dapps, 20 exploit contract addresses, 48

attacker EOAs, and 77 exploit transaction hashes. Table 2

summarizes attack information we collected from the reports.

To reconstruct the reported incidents, we will look into all

transactions, which were issued by attacker EOAs or exploit

contracts to interact with the victim Dapps. However, such

EOAs and exploit contracts may not be fully documented by

the reports (see Table 2). Here we elaborate a methodology

for finding the missing EOAs and exploit contracts.

First, to identify other EOAs in an attack incident, we in-

clude in the attack set all the EOAs that have created, called or

transferred fund into known exploit contracts, or have trans-

ferred fund to known attacker EOAs. More specifically, we

examine the transactions, whose to or from fields contain

reported attacker EOAs or exploit contracts. Here we con-

sider an address to be an EOA but not a contract if no code

is associated with it. For this purpose, we use the function

w3.eth.getCode() in python to get the size of the associated

EVM code. A problem is that a self-destructed contract also

reports a zero code size. In this case, to determine whether an

address belongs to a self-destructed contract, we search for its

creation transaction, the one whose contractAddress field

contains that address (see Section 2).

Further we expand the seed attack set Ds by adding the con-

tracts that are similar to the exploit one and have been called

by attacker EOAs. More specifically, we extract the contract

addresses, which were called by attacker EOAs, within a time

window (1 day in our study) before and after the exploit

transactions. Then we analyze the similarity of the extracted

contracts and the exploit contract. In particular, we convert

u Data Collection v Measurement

Analyzing Exploit 
Transactions

Analyzing Dapp 
Intervention

Analyzing 
Attacker EOAs

Incident reports

Missing EOAs and 
exploit contracts finding

Ds De

Transaction traces

Ethereum
Transactions

Transaction 
execution modeling

Exploit transaction 
clustering

Figure 2: Workflow of the measurement approach.

the bytecodes into opcodes using Octopus [6], and then cal-

culate their Jaccard similarity [29]. When they come close

(Jaccard similarity ≥ 0.9), we consider them to be similar

and the extracted one to be an exploit contract. Note that

the adversary can use suicide operations or self-destructive

operations to conceal his exploit contracts. In this case we

recover the runtime code of a self-destructed contract from

the contract’s creation transaction (see Section 2).

In this way, we built an expanded dataset De, which con-

tains 45 exploit contract addresses, and 227 attacker EOAs.

We consider the exploit transactions to be (1) all those re-

lated to exploit contracts, and (2) those related to attack EOAs

and issued within a 1-day window of a known exploit trans-

action. Altogether, we gathered 58,555 exploit transactions

from 2016/01/29 to 2019/01/07, which involve in 56 victim

Dapps (29 have never been reported before). To the best of

our knowledge, this is the largest dataset for on-chain victim

Dapp attack incidents that have ever been reported. We will

release it on publishing this paper.

Transaction execution modeling. To understand attack op-



erations, we analyzed the executions triggered by the exploit

transactions. In particular, we model a transaction’s execution

traces using a execution trace graph T G.

A transaction’s execution trace graph T G is a directed and

weighted graph as illustrated in Figure 1, in which each node

is an account (i.e., EOA or contract address), and each directed

and weighted edge describes an operation from one account

to another.

Definition 1. A T G is a directed and attributed graph T G =
(V,E,W, t) in a node attribute space Ω, where:

1. V is a node set, with each node being an account (i.e.,

EOA or contract);

2. Each node is assigned one of five attribute labels in Ω:

Dapp, EOA, self-destructed contract, Dapp related con-

tract and other contract.

3. Directed and weighted edge set E ⊆ V×V×W is a set

of operations between accounts, where W is a set of call

functions and parameters, e.g., execute() in Figure 5.

4. Time t is the timestamp of the transaction (when it is

created).

Given a set of execution traces of a transaction e =
{(Ii,Oi,Bi,Ti)|i = 1...n} (see Section 2), an attribute graph

T G can be constructed: here, the node set V is the collection

of Ii and Oi, E is the set of edges from Ii to Oi if (Ii,Oi,Bi) ex-

ists with the edge weights of the call functions and parameters

related to Bi. In our research, we gathered 436,371 execution

traces for 58,555 transactions using Bloxy API [13] .

Exploit transaction clustering. To understand the semantics

of the exploit transactions, for each attack incident, we clus-

tered transactions based upon their execution traces’ similarity

and timings (within a given time window). This is essentially

a between-graph clustering problem [9], which we solved

using a k-Means algorithm and a T G distance.

Definition 2. A T G distance D(g1,g2) is a distance between

two transaction graphs g1 and g2 that measures both their

structure similarity and timing closeness, as follows:

D(g1,g2) = α min
(o1,...,ok)∈O(g1,g2)

k

∑
i=1

c(oi)+β∆t (1)

where, O(g1,g2) is a set of graph edits (e.g., vertex or edge’s

insertion, deletion and substitution) that transform g1 to g2,

c(oi) is the cost for each edit, ∆t is the time difference (with

the unit of hour) between two graphs and α,β are the weights.

In our implementation, we used α = 0.9, β = 0.1, c() = 1,

adapted a python library GMatch4py [5] to compute D, and

set the number of iterations for k-Means to 3. In Appendix 7.2,

we present an analysis of the clustering performance and the

discussion on the rationale for threshold selection. In this way,

we gathered 126 transaction clusters related to 42 real-world

Dapp attack incidents from 2016 to 2019.

Table 3: Reported contracts under different parameter settings

(s: Jaccard Similarity; t: time window; TP: true positive)

Parameter
# reported

contracts (TP)
Parameter

# reported

contracts (TP)

s=0.9 45 (45) t=1 45 (45)

s=0.7 86 (50) t=3 58 (46)

s=0.5 126 (54) t=5 77 (48)

Discussion. The aforementioned methodology can only serve

as a measurement tool to derive exploit transactions and

gain insight into the Dapp attack footprints, instead of a full-

fledged detection system. Hence, to construct the expanded

dataset De, we set the thresholds (i.e., time window, the Jac-

card similarity of opcodes) for achieving a high precision,

which might however miss some exploit transactions. To esti-

mate the coverage, we lower down the threshold to improve

the recall at the expense of precision to compare the findings

with those reported with the original threshold.

Table 3 lists the number of reported contracts under differ-

ent parameter settings of opcode Jaccard similarity and time

windows. For the threshold of the similarity, when it is 0.9,

we observe that all 45 reported contracts are indeed exploit

contracts; when it becomes 0.5, our approach report 81 new

contracts. We manually investigate all those newly-reported

contracts and found only 9 exploit contracts (false negative),

while the remaining 72 were all false positives, associated

with 1,174 wrongly-reported transactions. Taking a close look

at these 15 missing cases, we find that all of them are the

evolved exploit contracts of the reported ones to optimize the

functionality (Section 3.2).

Similarly, with the threshold of time windows increasing

from 1 to 5, our approach report 32 more contracts associated

with 127 transactions. After manually analyzing all newly-

reported contracts, we found that only three are the exploit

contracts (false negative), where the attacker took a long time

interval (5 days) before using the same exploit contract to

launch the attack on the same Dapp again. It might be because

the attacker wants to test the original exploit on the patched

Dapp.

3.2 Analyzing Exploit Transactions

Our data collection and derivation method reconstructs 42

real-world Dapp attack incidents, consisting of 126 semantic-

similar transaction clusters with 58,555 transactions. Based

on these transaction clusters, we manually annotated them

and further performed a measurement study to understand the

criminal footprints and operational intents of Dapp attacks.

Overview: attack footprints. Before coming to the details

of our findings, we here first summarize the footprints of a

typical Dapp attack discovered in our research, which con-

sists of four stages: attack preparation, exploitation, attack

propagation and mission completion, as illustrated in Fig-

ure 3. In the attack preparation stage, a Dapp attack starts



Money 
Manager

Money 
Mule

Exchange 
Service

Exploit
 Developer

Exploit 
Contract

Preparation
Exploitation
Propagation
CompletionAttack 

Operotor

ETH 
Dapp

ETH Dapp

Test 
Contract

Test 

Transfer

Launch 

Transfer

Gain 
profit

Destruct

Call 

Attack

Withdraw

Ⅲ

Call 

Ⅱ

Ⅰ 

ⅰ

a

b

c

ⅱ 

ⅲ 

ⅱ 

ⅱ 

ⅲ 

ⅲ 

ⅱ 

ⅲ 

Ⅲ

1

3

1

4

2

4

Figure 3: Example of Dapp criminal footprints, which consists

of a four-stage attack lifecycle: attack preparation (➊-➍);

exploitation ( a - c ); attack propagation ( i - iii ) and mission

completion ( I -III ).

with several transactions for calling the victim Dapp from ex-

ploit developers to test their exploit codes (➊) before the full

attack is launched on the target (➋). Meanwhile, we observe

several transactions through which money managers transfer

attack cost (gas fee or ticket fee) into the exploit contracts (➌).

This is done through money mules to conceal the managers’

EOAs (➍). Then, in the exploitation stage, multiple attack

operators from different EOAs invoke the exploit contracts

( a ) to attack the victim Dapp ( b ) and gain profit ( c ). After

the attack, in the attack propagation stage, we found that the

operators either reuse or further adjust the exploit contract

(through update) ( i ) to exploit other similar Dapps ( ii ) to

gain more profit ( iii). During the mission completion stage,

the attack operators destruct the exploit contracts ( I ) and

withdraw attack profit ( II ). The profit is then transferred from

the attack operators or the exploit contract to the exchange ser-

vice through several money mules (III). Below we elaborate

on our measurement study and forensic analysis on real-world

Dapp attacks.

Attack preparation. We first analyzed how the attacker boot-

straps an attack. To this end, for each attack incident, we

looked at all transaction clusters executed before the attacker

continuously gains profit. More specifically, for each transac-

tion, we evaluated whether the attacker profits by calculating

the difference between his attack cost (i.e., money transferred

from the attacker EOA or the exploit contract to the Dapp)

and his attack gain (i.e., money transferred from the Dapp

to the attacker EOA or the exploit contract). If the attacker

continuously made profits from all of the transactions in a

cluster, we considered that he has successfully launched an

attack. Meanwhile, the clusters of the transactions executed

before the attack were marked as being associated with attack

preparation. In this way, we found the presence of such a

preparation stage in 85% of attack incidents with the average

number of transactions being 23. Also, the related prepara-

tion transactions were discovered within 81 days after the

target Dapp was released. Surprisingly, we found that the

weak randomness attacks were prepared in just 9 days after
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Figure 4: Balance of victim Dapps when miscreants started

the attacks. The bar in the figure indicated the time difference

between the Dapp launch time and the attack launch time.

the appearance of the target Dapps. This might be because

those Dapps usually share a similar vulnerable PRNG (see

Section 2), and can thus be easily attacked once the PRNG

has been exploited in one Dapp. Such attacks can be prepared

by the miscreants once the target Dapp has some balance after

launched (3461.5 Eths on average as observed in our study).

Figure 4 illustrates the balance of the victim Dapps.

When manually investigating operational intents of the

transactions in the preparation stage, we found that the at-

tacker’s transactions mainly serve two purposes: (1) testing

their exploit contracts and (2) transferring fund to bootstrap

their attacks (e.g., paying the gas fee). As an example, before

attacking the vulnerabilities in the two Fomo3D functions

isHuman() and airdrop() through an exploit contract (0x7d*),

the attacker 0x85* created two test contracts 0x56* and 0x80*

to evaluate these functions repeatedly. Apparently, the ad-

versary performed his own software integration testing to

ensure that all attack components worked smoothly together

before executing the attack. In total, we found that 78% of

the transactions at the attack preparation stage were used for

such integration testing, with 8 testing contracts deployed

and 96 transactions executed for this purpose in an attack

incident. Furthermore, from the execution traces of these

transactions, we identified 36 Dapp functions being tested.

79% of them were later attacked at the exploitation or the

attack propagation stage. This indicates that by identifying

the preparation stage, we could predict the vulnerable func-

tions to be exploited and stop an attack before it occurs (see

Section 4).

Attacks on Dapps come at a cost. For example, the attacker

may need to purchase a ticket for playing a game Dapp before

he can exploit its vulnerable functions, or pay a gas fee to

launch exploit transactions. In our research, 324 transactions

were discovered to transfer Ethers from EOAs or Ethereum

exchange services to exploit contract addresses or attacker

EOAs. As an example, in the attacks on Fomo3D, some at-

tacker EOAs got inflows of Ethers from one EOA 0xbf*,

through a set of intermediary EOAs (such as 0x2c*, 0xa7*



and 0x4c*) that were sequentially linked together to form

money flow chains. Note that those intermediary EOAs as-

sociated with only two types of transactions, either receiving

fund from a source or transferring it to another address. Al-

though acting as a money mule, intermediary EOA shows

a poor characteristic regarding anonymity, which is aligned

with the findings in the Bitcoin laundry [20].

Exploitation. As mentioned before, we determine the trans-

actions executed at the exploitation stage when the attacker

continuously makes profits from one Dapp. On average 1,394

exploit transactions from 6 attacker EOAs were observed

per incident. These transactions were used to either directly

invoke vulnerable Dapp functions, or deploy or trigger an

exploit contract to automate an attack. In total, we found

from our dataset 232 transactions for calling vulnerable func-

tions, and 22,269 transactions for triggering exploit contracts.

Particularly, attacks on weak randomness and improper au-

thentication, along with DoS, tend to utilize exploit contracts,

since in these attacks, each exploit transaction call only brings

in a small profit (e.g., prize per one guess), so the adversary

needs to run an exploit contract to continuously invoke the

target Dapp. On the other hand, in a reentrancy or an inte-

ger overflow/underflow attack, attacker EOAs usually directly

exploit the vulnerable functions in the target.

To better understand the operational intents of the attackers

at the exploitation stage, we analyzed the execution traces

of their transactions. Of particular interest is the observation

that the adversary tends to rapidly evolve his strategies during

an attack, to improve its effectiveness (e.g., more revenue or

less cost). Specifically, attackers were found to update their

exploits via delegatecall(), or creating new contracts. For ex-

ample, in the bad randomness attack on Fomo3D, as shown in

Figure 5, we observed the presence of three exploit contract

versions: since the airdrop function in Fomo3D heavily relies

on the calling contract’s block information (such as times-

tamp) to determine the winner, the first exploit version simply

creates many new contracts to predict the function’s output

using the block information and the public logic of airdrop

before invoking it; improving on the first version, the second

one evaluates existing contracts’ blocks through nonce(), and

utilizes the contract on the winning block to generate a tem-

porary contract (which still use its creator contract’s block) to

trigger airdrop, so as to save the cost for contract creation; the

last version collects all information from existing contracts

and makes the prediction off-chain before commanding the

most promising contract to invoke airdrop. With the evolution,

our research shows that the execution traces of these attack

versions turn out to be similar (average T G distance = 0.4).

This allows our tool DEFIER to uncover a new exploit version

never reported before (Figure 5(d)).

Attack propagation. Given the existence of many copycat

Dapps sharing the same vulnerabilities, our research shows

that attackers tend to reuse their exploit on one target to infect
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Figure 5: Exploit contract evolution at the exploitation stage.
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other similar Dapps. In particular, for the transaction clusters

that ran after the exploitation stage, we discovered the trans-

actions associated with the attack (i.e., continuously makes

profits) but involved in the Dapps different from the one at

the exploitation stage.

Looking into these transactions, we found that the adver-

sary reuses his exploit contract through either creating a new

contract with most its content copied from the old one or del-

egatecall() to invoke external code to run in the original con-

tract’s context. delegatecall() allows the adversary to simply

adjust the external code to aim the exploit contact at different

targets. For instance, at the propagation stage of the Fomo3D

attack, the attacker EOA 0x82* deployed a new contract (the

external code) to feed new vulnerable Dapp addresses to an

existing exploit contract through delegatecall(). In this way,

the attacker was able to reuse the exploit against 8 more Dapps

simultaneously, including Fomo Lightning, Fomo Short, etc.

This attack propagation stage is found to come right after

the exploitation stage, just 3.5 days apart on average. The

bad randomness attack and integer overflow/underflow attack

tend to have an aggressive propagation stage, with at least

four more Dapps victimized per attack incident. For example,

an integer overflow attack on Rocket Coin was propagated to

another 17 Dapps.

Also we found that the adversary could scan Dapps’ func-

tion names or runtime codes for the new targets carrying the

same vulnerability as the victim Dapp. This is based upon the

observation that 51% of the Dapps exploited at the propaga-

tion stage share the exactly same vulnerable function name

or function bytecode with the Dapp attacked at the exploita-

tion stage. Table 4 and 5 list the functions and the variables



Table 4: List of vulnerable functions

Functions #Dapp Attack type Jaccard sim.

transferFrom 16 Integer overflow/underflow 0.64

airDrop 8 Bad randomness 0.99

transfer 7 Integer overflow/underflow 0.78

transferProxy 6 Integer overflow/underflow 0.83

batchTransfer 5 Integer overflow/underflow 0.82

Table 5: List of vulnerable variables.
Function Vulnerable variable # attacks

transferFrom value 16

airDrop airDropPot 8

airDropTracker 8

transfer value 7

transferProxy value 6

v 6

r 6

s 6

batchTransfer value 5

(under a given function) most commonly appearing in the

attack incidents we collected. In particular, we observed that

the function transferFrom(), which is used for transferring

tokens between accounts, was exploited by the same integer

overflow attack in 16 different Dapps.

Mission completion. After a successful attack, our research

shows that the attacker often withdraws all the profits he made

and tries to remove attack traces by destructing all his exploit

contracts. Specifically, our dataset includes the transactions to

destruct exploit contracts by calling selfdestruct() or custom

destruct functions. Actually, 35.6% of the exploit contracts in

all attack incidents we studied were destroyed. Note that the

destruction of a contract automatically transfers its winnings

to the contract’s creator EOAs.

Interestingly, once an EOA receives the fund from its con-

tract, it tends to further transfer the winnings to another ad-

dress. In our study, we identified 198 transfer transactions

at the mission completion stage, and constructed the money

flow chains on them in the same way as did when analyzing

attack preparation. Figure 6(a) shows the cumulative distribu-

tion of the nodes in the money flow chains. We found that in

19% of money flow chains, illegal profit was transferred via at

least one money mule. Also intriguing is the observation that

the adversary always converts Ethereum tokens (e.g., Beauty

Coin, Smart Coin, SmartMesh Token) into Ethers before mov-

ing the fund into a long money flow chain, possibly due to

the belief that the latter have better protected values than the

former. For this purpose, a set of Ethereum Exchanges are

used. Figure 6(b) illustrates seven Ethereum Exchanges dis-

covered from our dataset. There are two types of exchange

services in Ethereum: centralized Exchanges (e.g., ShapeShift,

Binance, Poloniex, Gate.io and BitUN.io) and decentralized

Exchanges (e.g., EtherDelta and IDEX). From the data we

collected, apparently miscreants are more in favor of the de-

centralized ones. Particularly, EtherDelta shows up in 53%
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Figure 7: Dapp attack incident analysis.

of the attack incidents, while ShapeShift, the most popular

one among centralized Exchanges, is just found in 21% of the

incidents.

3.3 Analyzing Attacker EOAs

Then we looked into the role and relationships of 227 attacker

EOAs discovered in our study. Our study shows that attacker

EOAs are organized through a hierarchical structure during

an attack incident, with each of them playing one or more

roles. Further revealed in our study is the competition relation

among different attacker EOAs when exploiting the same

Dapp, across different attack incidents, as elaborated below.

Roles in an incident. We analyzed the roles of 227 attacker

EOAs by first categorizing them based on the attack stages

(Section 3.2) at which they appeared and then manually in-

vestigating their transactions to understand their behaviors.

More specifically, we observed that 19 EOAs acted as exploit

developers which created and tested exploit contracts at the

first stage (see Section 3.2); 168 EOAs invoked exploit con-

tracts or ran other exploit code, thereby likely playing the

role of attack operators; further 21 EOAs apparently managed

the attack cost inflow through transferring attack cost into

the exploit contracts via intermediary EOAs, behaving like

money managers, and 23 EOAs were found to relay attack

profits, as money mules did.

Our study shows that attacks on Dapps are organized

through a hierarchical structure in which every actor has a

well-defined role. There is only a small overlap among differ-

ent roles: Figure 7(a) shows that rarely do we see that an EOA



played more than one role, except that 21% of the exploit

developers also acted as attack operators.

Campaign competition. As mentioned earlier, 39% of the

victim Dapps have been exploited in more than one attack

incident. Interestingly, our research reveals the presence of

competitions among different attack campaigns on the same

Dapp. Here, a campaign is considered to include all attacker

EOAs showing up in an attack incident against a target Dapp.

Figure 7(b) compares the cumulative attack profits of three

campaigns on Fomo3D from 2018/06/15 to 2018/08/31. Each

of them involved a completely different set of EOAs from

others and therefore presumably they were organized by dif-

ferent parties. Campaign 1 first launched a bad randomness

attack on the Dapp on 2018/06/15, followed by Campaign 2

on 2018/07/08 and Campaign 3 on 2018/07/21. Here we use

the exploit success rate, defined as the number of successful

exploit transactions (i.e., receipt status is 1) among all exploit

transactions, to measure attack effectiveness. Although start-

ing relatively late, Campaign 2 evolved its exploit contract on

2018/7/20 to increase its effectiveness. Hence, it made more

profits than the other two campaigns. For Campaign 3, even

though it apparently was quite effective (see Figure 7(b)), the

attack only lasted for a short period of time and earned only a

small amount of profit, probably due to the fact that Fomo3D

had already lost most of its money during the attack.

3.4 Analyzing Dapp Intervention

We further studied how Dapp owners responded to the attack

incidents by analyzing Dapp’s transactions after an attack oc-

curs. We observe some Dapp owners abandoned their Dapps

(33 out of 56 victim Dapps), while others tried to fight back,

through patching, hiding source code or controlling access to

the critical functions. None of them, however, is found to be

a perfect solution in our research.

Dapp patching. Patching a vulnerable Dapp is complicated

due to the immutability of the code stored on the blockchain.

A typical solution is to create a new contract with the patch.

To understand this procedure, we extracted Dapp’s original

addresses from its website’s archive. We found that five of

the Dapps analyzed in our research updated their contract

addresses after being attacked, and one used delegatecall()

for patching. Interestingly, three Dapps were attacked again

after patching. For instance, Lucky Blocks changed its address

twice to fix vulnerabilities yet still ending up being exploited.

Closed source. Another way is security by obscurity, hiding

source code in an attempt to raise the challenge in reverse-

engineering. A prominent example is Lucky Blocks, a gam-

bling game, whose source code was removed right after a bad

randomness attack. Indeed, we did not see any more attack on

the Dapp after that. This approach, however, could make some

Dapp less trustworthy. Again, for Lucky Blocks, through ana-

lyzing its PRNG in the patched version, we discovered that

the Dapp owner stealthily adjusted the code to limit the range

function getRandom() returns (var r0) {

...

var temp0 = memory[0x40:0x60];

memory[temp0:temp0 + 0x20] = block.difficulty;

...

return keccak256(memory[temp1:temp1 + temp0

- temp1 + 0x54]) % 0x64; //0x64=100}

(a)
function getRandom() returns (var r0) {

...

var var1 = 0x5c; //92

var temp0 = memory[0x40:0x60];

memory[temp0:temp0 + 0x20] = block.difficulty;

...

var var2=keccak256(memory[temp3:temp3+(temp2+0x20)-temp3]);

if (var1){return var2 % var1;} else {assert();}}

(b)

Figure 8: PRNG codes of Lucky Blocks.

of the randomly-produced lucky number, thereby reducing

the winning chance by 8% (Figure 8). The Dapp later indeed

shows higher owner-side revenue.

Administrator list. Finally, we found that 33 of the 56 victim

Dapps utilized administrator lists to restrict access to their

critical functions. However, the administrator list cannot stop

the attack that exploits the vulnerabilities in an authentication

mechanism to bypass access control. An example is the attack

on Morph [45]. Also, this strategy requires the identification

of critical functions beforehand.

4 Finding New Attacks

In this section, we show how the new CTI discovered can help

find new attacks, including those on 0-day victim Dapps. Our

key insight is that even though specific operations may vary

across different types of attacks on different Dapps, the high-

level behavior patterns (e.g., testing exploit contracts) are

relatively stable in each attack stage (e.g., attack preparation

stage), and can therefore be learned from a set of transactions

and their execution traces. Here we elaborate on a methodol-

ogy, called DEFIER, that utilizes the sequence of transactions

and the operations they trigger to recover attack footprints

and determine the stage of an exploit.

4.1 DEFIER: Idea and Design

DEFIER includes two components, Preprocessing and

Sequence-based Classification. Preprocessing takes as its

input a set of transactions directly interacting with a Dapp,

automatically extending the set to include those indirectly

related to the Dapp (Section 4.2). These transactions are then

clustered into groups based on the similarity of their execution

traces and the closeness in their invocation times (within a

short window). These transaction groups are then utilized by

Sequence-based Classification to re-construct potential attack

footprints, in terms of a transaction sequence from multiple



EOAs (Section 4.3). More specifically, for each sequence of

transactions (modeled as vectors through graph embedding),

we propose a novel embedding technique to convert the se-

quence into a feature vector that captures the latent intent of

the sequence (through an attention model to focus on each

transaction’s interactions with the Dapp and an analysis on the

relation between transactions). Those vectors then go through

a multi-class classifier to output the attack stage they belong

to if they are indeed exploit attempts

Example. To explain how DEFIER works, here we walk

through its workflow using an attack incident on Suoha, a

victim Dapp found at the propagation stage of a bad random-

ness attack on Fomo3D. To investigate this attack incident,

DEFIER identifies the latent intent (i.e., exploit calling at the

propagation stage) by (1) clustering similar transactions from

EOAs across different Dapps (e.g., transactions that launch

the same exploit on multiple Dapps) and (2) then analyzing

those transactions to find the latent intent.

More specifically, DEFIER first runs Preprocessing to

gather transactions, whose to fields or execution traces con-

tain Suoha’s address. From those transactions, 286 EOAs

(including those calling 7 contracts to interact with the Dapp)

are extracted. Further, we gather the EOAs’ transactions with

other Dapps, those with a small TG distance with the transac-

tions with Suoha. In this way, 11,088 transactions are iden-

tified and further clustered into 142 groups with an average

TG edit distance of 0.2 and a time window of 1.5 hours. For

each of these groups, Sequence-based Classification first runs

graph embedding to convert each transaction to a vector and

each group to a vector sequence and then utilizes an LSTM

model to analyze the relation between the vectors in the se-

quence, converting each sequence to a feature vector. Then, a

multilayer perception (MLP) classifier, trained over the trans-

actions from reported attacks, labels 3 of the sequences as

attack propagation and the remaining 139 as legitimate.

4.2 Preprocessing

The Preprocessing step is meant to gather and cluster relevant

transactions to analyze all EOAs’ operations and their intents

on a Dapp. Such intents sometimes cannot be profiled only

by the transactions directly interacting with the Dapp. For

example, one can only recognize the intent to reuse exploit

code on other Dapps (the propagation stage) by looking at

the transactions on other targets, which look similar to the

exploits on the Dapp (Section 3). Hence in our research, we

include all such similar transactions, even though they are

not directly related to the Dapp. Altogether, we consider the

following two types of transactions during preprocessing:

• Dapp transactions. We collect the transactions with

the Dapp and those that internally communicate with the

Dapp (the transactions do not have the target Dapp ad-

dress in their To fields but invoke its functions as discov-

ered from their traces). For this purpose, our implemen-
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Figure 9: Sequence representation

tation relies on APIs get_normal_txs_by_address [3] and

get_internal_txs_by_address [4] from Etherscan [2] to iden-

tify those transactions.

• Semantically-similar transactions. Given those Dapp trans-

actions, to better understand the operational intents of an EOA,

we also gather from the same EOA the transactions with simi-

lar execution traces or occurring concurrently.

Specifically, we first identify all the EOAs directly inter-

acting with the Dapp, including the addresses directly calling

the Dapp and the ones creating a contract to invoke the call.

To this end, we fetch the transactions whose to fields or exe-

cution traces contain the Dapp addresses, to identify a set of

EOAs and contracts. Then, given a contract S interacting with

the Dapp via a transaction txs, we collect all the EOAs who

have created, called or transferred money into the contract S.

In this way, we discover all relevant EOAs, which allows us

to use the transactions to profile the behaviors of each EOA.

Such profiling is done by running Algorithm 1 on seman-

tically similar transactions. In particular, given an EOA u

interacting with the Dapp via a transaction txs, we acquire all

her transactions whose TG distances with txs are within th (a

threshold). In our implementation, we set th to 3 based on an

empirical study (Section 3).

Transaction clustering. As mentioned in Section 3, an oper-

ational intent (e.g., exploit testing, multiple-step game playing

operations) sometimes consists of several transactions from

multiple EOAs. To find the transaction clusters under the

same operational context, we utilize the algorithm described

in Section 3 to group the transactions with similar execution

traces or happened within a small time period.

Account de-noising. Complicating our analysis effort is the

presence of Dapp owner EOAs and library contracts (e.g.,

a game playerbook contract for managing players’ informa-

tion or a contract supporting access to external network data),

which should not be included in an attack investigation. To re-

move the noise, we first identify the library contracts through

a Dapp’s call execution traces: those invoked proactively by

the Dapp are considered to be library contracts. For this pur-

pose, we find all the contracts recorded by the call execution

trace, whose “from" fields are the Dapp address and input

fields are not “0x". To handle the library contracts, which had



Algorithm 1: Transactions Extension Algorithm

Data: Dapp: a dapp and its addresses.

1 begin

2 EOAs = extract_eoa_of_dapp(Dapp)

3 interval = 1 day

4 threshold = 3

5 for EOA ∈ EOAs do

6 txs = get_txs_by_DappandEoa(Dapp, EOA)

7 for tx ∈ txs do

8 date = tx_date(tx)

9 focus_period = calculate_period(date, interval)

10 extend_txs = get_tx_in_period(EOA, date_period)

11 picked_txs = [etx for etx in extend_txs if distance(tx,

etx) ≤ threshold]
12 save(picked_txs)

13 end for

14 end for

15 end

not been proactively called yet, we conduct a static analysis

on the bytecode of a Dapp. In particular, we decompile the

bytecode using [7], and then extract the library contract ad-

dresses using a regex "0x[a-fA-F0-9]{40}". Also, we retrieve

Dapp creation transaction receipts (i.e., the receipts contain-

ing the contractAddress field of the Dapp address, which

have been collected during the library contracts extraction) to

extract the Dapp creator addresses from the from field.

4.3 Sequence-based Classification

From each transaction cluster, we form a transaction se-

quence, with transactions ordered by their timestamps. For a

transaction sequence, we determine whether it describes an

attack on a Dapp by predicting its latent intent (e.g., exploit

testing, attack propagation, etc.) based upon the knowledge

about other sequences with similar semantics. A semantically-

similar transaction sequence ŝ related to a Dapp attack stage

y is represented as 2-tuple ({txi|i = 1...k},y), where {txi|i =
1...k} are transactions in ŝ and y is the label of an attack stage.

The goal of the sequence-based classification is to find the

class label y for an input sequence ŝ given the classifier’s

model parameters θ, i.e., y′ = argmax Pr(y|ŝ,θ), where the

parameters are learnt from a training dataset. For this purpose,

we first convert the transaction sequence ŝ into a vector se-

quence, with each element also being a vector that represents

its corresponding transaction graph through a graph embed-

ding. This sequence is then fed to an LSTM model to generate

a vector h that describes the relation between transactions and

highlights the information related to malicious behavior. Here,

we choose LSTM, a modified RNN, since it is designed to

learn the long-term dependency relations among the elements

on a sequence [28], which is critical for identifying the pat-

terns that link transactions together at different attack stages.

The vector is later classified by a multilayer perceptron (MLP)

to determine whether it is indeed related to an attack stage.

Sequence representation. As illustrated in Figure 9, each

transaction txi in ŝ, as described by its associated execution

traces tgi, represents an interaction between the correspond-

ing Dapp and EOA. However, the transaction’s execution can

be too Dapp-specific and noisy to capture the operational

intent, since the execution trace may contain many opera-

tions that happen inside the Dapp, for example, invocation

of the Dapp’s internal libraries to generate a pseudo-random

number (Figure 5), which is less relevant to the EOA-Dapp

interactions of interest to us (attack preparation, exploitation,

propagation and completion). To address this issue, we em-

ploy an EOA-Dapp-execution attention model to highlight the

useful information related to the EOA’s intent on the Dapp.

Here the attention ai is used to adjust the vector representation

of the transaction graph tgi. It is determined by a weighted

combination of the vector representations of EOA eoai, Dapp

di (produced by a vertex embedding [25]) and that of tgi

(produced by graph embedding [19]). Its weights are learnt

through an LSTM model (Figure 9) within an end-to-end

deep neural network that ultimately outputs the feature vector

characterizing whole input (the vector sequence representing

a transaction sequence).

ai = so f tmax(NE(eoai)⊕NE(di) ·GE(tgi)
T ),

ei = ai ·GE(tgi)
(2)

where ⊕ is the concatenate operation, NE() is the vertex

embedding (e.g., node2vec [25]) of the input, which gener-

ates a vector representation for each node, GE() is the graph

embedding (e.g., structure2vec [19]) of the input, which gen-

erates a vector representation for each transaction graph, and

so f tmax(x)i =
exp(xi)

∑ j exp(x j))
. In our implementation, the length

of the node embedding is set to 64. We construct the con-

catenation of the EOA and the Dapp vertex embedding into a

vector with a length of 128.

In the deep neural network, we further utilize a standard

combination gate [28] to determine how much information

from the EOA, the Dapp and the transaction execution will be

used through adjusting their weights. In this way, we obtain

the representation xi of the transaction txi:

ci = σ(W · (NE(eoai)⊕NE(di)⊕ ei)
T +b),

xi = (1− ci)◦ ei + ci ◦ (GE(tgi))
(3)

where W is a weight matrix, b is a bias, σ is the sigmoid

function, and ◦ is the element-wise multiplication. Given

transaction encoding xi, we use a Bidirectional LSTM [24],

which has been trained with the classifier (see below) on

labeled dataset (Section 4.4), to capture the inner relationship

between transactions. In this way, the transaction sequence

can be converted into a vector h by the trained model.

Sequence classification. The output of the attention model, h,

serves as the input to a multilayer perception (MLP) classifier.

The MLP is used by DEFIER to generate the probability y′

for a given attack stage the sequence is associated with. The



Table 6: Dataset and evaluation results.
Dataset # transactions Results

Groundtruth set
badset 57,855 premicro 98.2%, premacro 92.4%

goodset 39,124 recmicro 98.1%, recmacro 98.4%

Unknown set 2,350,779 positive 476,334

Sampled testset 30,888
premicro 91.7%

premacro 83.6%

premicro and premacro: micro of precision, macro of precision

recmicro and premacro: micro of recall, macro of recall

positive: transactions that labeled as one of attack stages

whole Sequence-based classification module, including the

LSTM and the MLP, can be trained together through stochas-

tic gradient descent, a typical way to train such a complicated

model [14], on labeled data (Section 4.4). In our study, we

built a Bi-LSTM with three folds, whose convolution sizes

were 128, hidden sizes were 256 and batch sizes were 128.

The epochs were set as 20 and learning rate was set as 0.0001.

The hidden size of MLP was set as 256.

4.4 Evaluation

Here we evaluate DEFIER and elaborate on the challenges in

multi-stage exploit transaction identification.

Evaluation with groundtruth set. We evaluated DEFIER

over the following ground-truth dataset as shown in Table

6: for the bad set, we collected 57,855 transaction sequences

associated with Dapp attacks from our measurement study. In

particular, for exploit transactions in the same attack stage,

we first order them by timestamp, and then define a sliding

context window with the size of w (w=8 in our implemen-

tation) to chunk the time-ordered transactions into transac-

tion sequences. Finally, we label those transaction sequences

by their attack stages. We detail the annotation process in

Appendix 7.3. In this way, we built a bad set with 57,855

transactions (469 at the attack preparation stage, 22,333 at the

exploit stage, 34,763 at the attack propagation stage and 290

at the mission completion stage). The transactions of good

set were gathered from 56 victim Dapps related to the bad

set and 318 manually checked normal EOAs on these Dapps.

Specifically, we ran the module of Preprocessing to generate

the transaction sequences with the same size of context win-

dow. In this way, we construct a good set with 39,124 normal

transaction sequences. Running on these sets under 10-fold

cross validation, DEFIER shows a micro-precision of 98.2%,

a macro-precision of 92.4%, a micro-recall of 98.1% and a

macro-recall of 98.4%.

Table 7: Performance comparison in different models
Method Attention precision recall F1

RNN no attention 0.965 0.962 0.963

RNN attention 0.974 0.969 0.971

LSTM no attention 0.977 0.975 0.976

LSTM attention 0.982 0.981 0.981
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(a) Model performance with dif-

ferent window size

(b) ROC

Figure 10: Evaluation results.

Missed cases. On the ground-truth dataset, seven cases were

missed by DEFIER. These transactions fell through the cracks

due to inadequate attack-related semantic content in their

clusters. In three cases, we found that the size of the sliding

context window is not large enough to capture some attack

behaviors, and as a result, the adversary’s operational intents

and the attack stages could not be determined. In other cases,

the problem comes from the presence of reverted transactions,

whose original execution traces cannot be obtained, which

prevents DEFIER from building up their transaction graphs.

Determining the number of missed malicious transactions

in the large-scale unknown set (with more than 2.3 million

transactions, 342K clusters) is challenging. What we did in

our research was to flag a transaction cluster as the class

types with the largest predicted probability, as well as the

second largest predicted probability when it is greater than 0.5.

This strategy will include more flagged cases, at the expense

of precision. In this way, our approach flagged 1,069 more

transaction clusters. We manually analyzed all of them and

found 167 new exploit transaction clusters. Looking into these

missed cases, we found that 146 cases were caused by the

window size or reverted transactions, as mentioned above. The

remaining 21 cases resulted from the lack of Dapp information

for transaction graph node labeling (see Section 3.1). This

problem can be handled by a more comprehensive Dapp list.

Falsely detected cases. We also found two major causes for

the 322 false positives observed in our study (Section 4.5).

Those transaction clusters are either semantically similar to

the clusters in another attack stage, or having attack patterns

of multiple attack stages. For example, when attackers evolve

their attack strategy (Section 3.2) frequently without exploita-

tion behavior, our model may misclassify these exploitation

clusters as attack preparation clusters. This is because the

transactions during attack strategy evolution can be semanti-

cally similar to those for attack preparation: the adversary kept

using new exploit contracts to interact with a Dapp, and attack

costs were transferred to the new exploit contract to bootstrap

attack. The second type of false positives is caused by the

incorrect transaction clustering. For example, one transaction

cluster of CityMayor consists of the transactions at attack

preparation stage and exploitation stage, because the time

interval between these transactions is small (≤ 10 minutes),

and the similarity of these transactions is large (average TG

distance ≤ 0.33).



Table 8: Performance comparison in different epochs
Epoch learningrate precision recall F1

10 0.001 0.965 0.962 0.963

20 0.001 0.982 0.981 0.981

50 0.001 0.980 0.980 0.980

100 0.001 0.994 0.980 0.980

Table 9: Performance comparison in different learning rates
Epoch learningrate precision recall F1

20 0.1 0.958 0.914 0.932

20 0.01 0.978 0.977 0.977

20 0.001 0.982 0.981 0.981

20 0.0001 0.985 0.982 0.983

20 0.00001 0.918 0.906 0.908

Parameter and model selection. In Section 4.2, the size

of the sliding context window w controls the length of the

transactions used to inspect the operational context. Here

a small window size might contain inadequate information

about the operational context, while a large window may bring

in the information across different stages, which leads to noise.

In our research, we analyzed the impact of various w (5, 8, 10),

as illustrated in Figure 10(a) and 10(b), over the ground-truth

dataset, and chose the one with the best performance (w = 8).

Parameters such as the number of epochs and the learning

rates for the LSTM model are used to control the performance

of the model. In our study, we tuned the model by varying

the number of epochs from 10 to 100 and the learning rates

from 0.00001 to 0.1. From the result shown in Table 8 and

Table 9, we can see that the classification performs best under

20 epochs and a learning rate of 0.0001.

In our study, we compared the effectiveness of RNN and

LSTM models on the sequence classification tasks. Specifi-

cally, we implemented four models: RNN, RNN with atten-

tion, LSTM, LSTM with attention on the groundtruth dataset

and evaluated their effectiveness using 10-fold cross valida-

tion. Similar to the LSTM model we used (Section 4.3), the

backbone of the RNN is also three layers 128 * 256 * 128 with

the batch size of 128. Table 7 shows the results. We observe

that the LSTM with attention outperforms other sequence

classification models.

4.5 Discovery and New Findings

We collected 104 popular Dapps and their corresponding con-

tract addresses from a Dapp ranking list [8]. On these Dapps,

we ran the Preprocessing to gather 2,350,779 transactions

from Ethereum and construct 342,224 transaction clusters.

Note that we eliminate all the transactions used in the mea-

surement study (Section 3). DEFIER inspected these trans-

actions and labeled 476,342 of them (100,081 clusters) with

one of the attack stages. These transactions are related to

attacks on 85 victim Dapps. For each victim Dapp, we ran-

domly sampled 4% of the reported transaction clusters for

manual validation. In total, we manually investigated 4,003

Table 10: Victim Dapps in different categories.

Type

#

Dapps/0-

day

# attacker

EOAs/0-day

# exploit

transactions/0-

day

ex. of victim

Dapps

Gam-

bling
51/43

65,778

/11,339

360,524

/114,473

Lucky

Blocks

Game 28/27 959/919
52,673

/52,176
SpaceWar

Finance 5/5 183/183
59,872

/59,872
STOX

Token 2/1 279/167 4,478/472
Power of

Bubble

Total 85/75
67,199

/12,608

476,342

/226,763

Table 11: Unknown set result.

Attack stage
# Dapps/0-

day

# attacker

EOAs/0-day

# exploit

transactions/0-day

Attack

preparation
80/70 42,661/8,237 214,408/106,436

Exploitation 85/75 35,955/3,650 143,179/39,908

Attack

propagation
75/65 18,466/6,545 118,755/80,419

transaction clusters with 30,888 transactions. We found that

3,671 clusters are indeed related to attack incidents and 3,347

clusters are at the right attack stage.

Table 10 summarizes our findings. Our study reveals that

Ethereum Dapps attacks are indeed prevalent, compromising

various kinds of Dapps through different attack vectors. We

observe that 57.3% of the victim Dapps are in the category of

Gambling. To support the gambling functionality, these Dapps

need to generate random numbers, which sometimes are im-

plemented by a weak PRNG, thereby exposing the Dapps to

the bad randomness attack. Note that in our study, 82% of

the Dapps scanned by DEFIER were observed under attacks.

This might be because the Dapps we analyzed were highly

popular with large balances, which makes them more likely

to be targeted by the miscreants. Also, among the 85 victim

Dapps found in the exploit transactions, 75 (e.g., SpaceWar

and SuperCard) were never reported before.

To understand the economic impacts of these abusive ac-

tivities, we estimate the financial loss of the victim Dapp. In

particular, for each victim Dapp, we calculate its income and

cost difference of the exploit transactions. Table 12 shows

the victim Dapps with the top-5 largest losses. The total loss

inflicted by the attacks on these five Dapp is estimated to be

28,485 Ethers.

Table 11 shows the number of Dapps found in each of the at-

tack stages. Interestingly, our model identifies 214,408 attack

preparation transactions associated with 80 Dapps. We found

507 functions were tested by the adversaries. Interestingly,

311 functions were indeed exploited in the exploitation stage.

It indicates that our model can help identify the vulnerable

functions before they are exploited.



Table 12: Top-5 victim Dapps with largest losses.

Dapp
# transac-

tions

# exploit

transactions

Revenue

(Eth)

LastWinner 561,845 101,304 13,295.2

Fomo3D 438,062 83,833 14,630.9

Dice2Win 69,874 8,919 185.0

Fomo Short 52,431 4,075 314.7

SuperCard 43,897 6,315 59.2

5 Discussion

Mitigation. Based on the results of our measurement study,

we have identified several potentially effective mitigation

strategies to control the fast-growing Ethereum Dapp attacks.

In our study, we observed several stakeholders (e.g., exploit

developer and money manager) in the Ethereum Dapp crimi-

nal ecosystem. Identifying such upstream criminal roles and

monitoring or even restricting their activities (e.g., blocking

them from accessing Dapps) could prevent attacks at the early

stage (see Section 3.2).

Also, for the Dapp owner, an effective way to mitigate

the threats she is facing is to detect an exploit attempt at

its preparation stage, and also keep track of the exploits on

similar Dapps to prevent the propagation attack. Particularly,

since DEFIER identifies each stage of the kill chain without

depending on other stages’ information, it can be utilized for

the attack preparation investigation. Also, as mentioned in

Section 4.5, we found that 62% of the functions tested by

the attackers at the preparation stage were indeed exploited

later. Identifying these functions would help the Dapp owner

to locate the vulnerabilities in her Dapp. In addition, our

study reveals the prevalence of the attack propagation stage, in

which attackers reuse their exploit on one target against other

similar Dapps. Therefore, to prevent the attack propagation,

the owner can use DEFIER for exploitation monitoring on

her Dapps with similar functionalities and take actions before

attacks happen.

Limitation of DEFIER. Our design is limited by the informa-

tion it uses: historical transactions and their execution traces.

Although these transactions provide valuable sources for at-

tack investigation, they miss the attack operations that do not

generate transactions, such as conducting a local invocation

(e.g., eth_call) or calling a constant function of a Dapp (e.g.,

constant, view and pure). While those operations are read-

only or do not change the Dapp state, and thus are found to

be rarely exploited in the attack incidents (see Table 14), we

acknowledge that our vantage point might cause some attack

cases to fall through the cracks. We will leave a further study

on the problem to the future research.

Also, as a supervised learning model, DEFIER required

training set which labels transactions by its attack lifecycle.

While we believe our paper yields meaningful CTI implica-

tions, which help data annotation, we acknowledge that the

data annotation for our model can be time-consuming. How-

ever, since the training set aims at capturing high-level and

relatively-stable attack intents, the training set can be used

until those criminal intents change.

The design of DEFIER is based upon high-level threat

intelligence (e.g., kill chain and attack patterns) instead of

fine-grained Dapp-specific attack operations, and therefore is

robust to the small adjustments of attack activities. However,

the attack that does not exhibit the intent related to the stages

or just involves a single exploit transaction with limited profit

may not be identified. On the other hand, DEFIER would raise

the bar to Dapp attacks, making them more costly especially

to the adversary who wants to launch the attack on a large

scale to make a profit.

Other blockchain platforms. Our current design is focused

on Ethereum Dapps due to their popularity. However, such

criminal operation mode can also be found in other blockchain

platforms (e.g., EOS). In particular, we conducted a small-

scale study on the attack incidents of EOS Dapps (i.e.,

EOS.WIN, EOSCast and EOSRoyale) and discovered a simi-

lar attack lifecycle and attack patterns from the EOS transac-

tions and their corresponding execution traces.

6 Related Work

Study on Ethereum Dapp security. The security issue on

Ethereum Dapp is attracting increasing attention from re-

searchers. Aside from vulnerability assessment [16, 30, 50],

studies on real-world Ethereum Dapp attacks and frauds are

also conducted to understand the cybercriminal situation on

Ethereum Dapps. For example, Chen et al. [16] studied the

Ponzi scheme Dapps on Ethereum and built a machine learn-

ing based Ponzi scheme Dapp detection tool. Torres et al. [46]

investigated another fraud Ethereum Dapps: honeypot, where

attackers lure victims into vulnerable contracts. The paper in-

troduced a methodology that uses symbolic execution for the

automated detection of honeypot contracts. Chen et al. [15]

identified abnormal EOA, that creates lots of contracts that

are rarely used, by a threshold-based method. This method

was validated using four denial-of-service EOAs. Atzei et al.

[10] provided a survey on real-world attacks against Ethereum

smart contracts, giving a taxonomy and discussing the vulner-

abilities in detail. However, this work focused on the vulner-

ability assessment and did not study the attacker operations

and the associated kill chain. To the best of our knowledge,

our paper is the first to study cybercriminal ecosystem (e.g.,

attack lifecycle, attack infrastructures, campaign organization,

etc.) on real-world Dapp attacks, leveraging the open and

immutable transaction records kept by the Ethereum.

Security event detection and forensic. DEFIER investi-

gated the problem of intrusion detection and forensic analysis,

with a specific focus on Etherem Dapp attacks. Numerous

studies [21, 38, 43] have looked into security event detection

and forecast in various domains. Recent year witnesses the

trend of understanding high-level event semantics for a more

efficient and effective security event detection. Ben-Asher et



al. [12] quantitatively evaluated the effectiveness of using con-

textual knowledge for detecting cyber-attacks. Ma et al. [31]

proposed a semantics aware program annotation to partition

execution based on the application specific high level task

structures. Shen et al. [44] used temporal word embedding to

cluster security events under similar context and track their

evolution. Hassan et al. [26] proposed a threat alert triage

system that features historical and contextual information to

automatically triage alerts. The closest work to our study is

HOLMES [35], a real-time APT detection system that gen-

erates a high-level graph, that summarizes the attacker’s kill

chain steps, to identify behavior associated with known attacks

based on frequency analysis. In contrast to previous works,

the kill chain and the associated attack operations are under

explored in the domain of Ethereum Dapp attacks, which

turned out to be very different from the traditional APT kill

chain. In our study, we first time utilize Ethereum transaction

time series analysis based on graph sequence mining to learn

the high-level attack operational intents, which allows us to

accurately detect both known and unknown attacks.

7 Conclusion

In this paper, we report our study on Ethereum Dapp attack

incidents, which consist of a sophisticated attack hierarchi-

cal structure, multiple criminal roles, and various kinds of

attack behaviors. To investigate such attack incidents, we per-

formed the first measurement study and forensic analysis on

real-world Dapp attacks, leveraging the open and immutable

transaction records kept by the Ethereum blockchain. In par-

ticular, we propose a methodology to supplement the missing

attack information of Dapp incident reports. Utilizing more

comprehensive attack transactions and their execution traces

for each attack incident, we conduct an empirical study to

recover Dapp cybercriminal’s end-to-end footprints, as well

as the corresponding kill chain and attack patterns. Moving

forward, we believe that there is a great potential to utilize

such threat intelligence to automatically investigate Dapp on

a large scale. Running on 2,350,779 transactions from 104

Ethereum on-chain Dapp, our Dapp investigation tool DE-

FIER, which captures high-level attack intents, successfully

identified 476,342 exploit transactions on 85 victim Dapps,

which have never been reported before. It sheds on light that

our understanding of Ethereum Dapp cybercrime will help

more effectively defend against this emerging threat.
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Appendix

7.1 Data formats of three types of transactions

and their associated receipts

TO 0x9795***
FROM 0x1249***
VALUE 0.65 Ether
DATA 0x
GAS
PRICE

1.20002x10-8

Ether (12.0002 
Gwei)

(a) Ether transfer

TO (empty)
FROM 0x9795***
VALUE 0 Ether
DATA bytecode of

contract
GAS
PRICE

1.2x10-8 Ether 
(12 Gwei)

(b) Contract creation

TO 0x9528***
FROM 0x9795***
VALUE 0.0577307 Ether
DATA 0xc0406226

(methodID of 
function run())

GAS
PRICE

1x10-8 Ether 
(10 Gwei)

(c) Contract call

TRANS
HASH 0x9285***

FROM 0x1249***
TO 0x9795***
GAS USED 21,000
CONTRACT 
ADDRESS null

STATUS 0x1

(d) Receipt of Ether

transfer

TRANS
HASH 0xa4c8***

FROM 0x9795***
TO (empty)
GAS USED 624,014
CONTRACT 
ADDRESS 0x6be5***

STATUS 0x1

(e) Receipt of Con-

tract creation

TRANS
HASH 0x4971***

FROM 0x9795***
TO 0x9528***
GAS USED 417,124
CONTRACT 
ADDRESS null

STATUS 0x1

(f) Receipt of Con-

tract call

Figure 11: Three types of transactions supported on Ethereum.

7.2 Parameter and model selection for trans-

action clustering

As mentioned in Section 3.1, the parameter α and β indicate the importance

of structure similarity and timing closeness when measuring TG distance



Table 13: Performance comparison under different cluster model
Method accuracy recall time cost parameters setting

k-Means [32] 0.95 0.83 84.93s
iteration number is 3; k is all the first transaction in sequences split by a

10-hour time window

Agglomerative Hierarchecal [34] 0.83 0.97 2h30min k is all the first transaction in sequences split by a 10-hour time window

DBSCAN [22] 0.89 0.76 2h27min eps is 0.5; the minimal points of a cluster is 2

Table 14: List of Dapp incidents reports.
Source Report URL Victim Dapp

PeckShield https://blog.peckshield.com/2018/04/22/batchOverflow/ BeautyChain(BEC)

PeckShield https://blog.peckshield.com/2018/04/25/proxyOverflow/

MESH, UGToken(UGT), SmartMesh(SMT),

SmartMesh Token(SMART), MTC, First(FST), GG

Token, CNY Token(CNYt)

PeckShield https://blog.peckshield.com/2018/05/10/multiOverflow/ Social Chain (SCA)

PeckShield https://blog.peckshield.com/2018/08/18/replay/ SmartMesh(SMT), UGToken(UGT), First(FST), MTC

PeckShield https://blog.peckshield.com/2018/08/14/unsafemath/ MovieCredits (EMVC)

Medium
https://medium.com/coinmonks/an-inspection-on-ammbr-amr-bug-a5

3b4050d52
Ammbr(AMR)

4Hou https://4hou.win/wordpress/?p=21704
Ammbr(AMR), Beauty Coin (BEAUTY), Rocket Coin

(XRC), Social Chain (SCA)

BCSEC https://bcsec.org/index/detail?id=157&tag=1 Morph

Aeternity
https:

//blog.aeternity.com/parity-multisig-wallet-hack-47cc507d964d
Parity

BitcoinTalk https://bitcointalk.org/index.php?topic=1400536.60 Rubixi

Github https://github.com/ether-camp/virtual-accelerator/issues/8 HackerGold(HKG)

Reddit
https://www.reddit.com/r/ethdev/comments/7x5rwr/tricked_by_a_hon

eypot_contract_or_beaten_by/
PrivateBank

Reddit
https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fom

o3d_a_beginners_guide
Fomo3D

PeckShield https://blog.peckshield.com/2018/07/24/fomo3d/ Fomo3D, RatScam

Medium
https://medium.com/@AnChain.AI/largest-smart-contract-attacks-

in-blockchain-history-exposed-part-1-93b975a374d0
Fomo3D, LastWinner, RatScam, FomoGame

Medium
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a

-detailed-explanation-b30a69b7813f
Fomo3D

Medium
https://medium.com/@Beosin/there-is-only-one-truth-god-game-at

tack-analysis-ea4821d27cc3
GodGame

360 http://blogs.360.cn/post/Fairness_Analysis_of_Dice2win_EN.html Dice2Win

King of the

Ether

Throne

https://www.kingoftheether.com/postmortem.html King of the Ether Throne

Reddit
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_

1100_eth_jackpot_payout_is_stuck/
GovernMental

Medium
https://medium.com/spankchain/we-got-spanked-what-we-know-so-f

ar-d5ed3a0f38fe
SpankChain

(Definition 1). In our implementation, we analyzed the impact of various α
and β as shown in Table 15 on the ground-truth set, and chose the combination

of α and β (i.e., α = 0.9,β = 0.1) with the best performance.

Also, we compared the effectiveness of different clustering algorithms, i.e.,

k-Means, DBSCAN, Agglomerative Hierarchical, on our task. The results,

with pre-parameters required by cluster models, are shown in Table 13. We

observe that the clustering algorithm k-Means outperforms other clustering

algorithms in terms of accuracy and efficiency. In our study, we weight the

correctness of the results and use k-Means for transaction clustering.

Table 15: Performance comparison under different distance

weight
α β precision recall

0.01 0.99 0.97 0.78

0.1 0.9 0.97 0.76

0.3 0.7 0.97 0.72

0.5 0.5 0.97 0.62

0.7 0.3 0.95 0.81

0.9 0.1 0.95 0.83

0.99 0.01 0.96 0.82

7.3 Data annotation

We manually examined transaction clusters to identify the adversary’s in-

tent and annotate their attack stage. Serving this purpose is the grounded

theory [33], a systematic methodology that constructs a concept through

methodical gathering and analysis of data in social science. More specifi-

cally, we analyzed transaction clusters through the following three stages:

coding that identifies the anchors (e.g., multiple contract creations and self-

destruction traces in a transaction, using the same contract to call several

Dapps, achieving significant large profit in one transaction, etc.) that enable

the key points of the annotation; code collection and iteration that iteratively

groups anchors and aligns them to the adversary’s operational intents through

comparison [23] (e.g., a transaction cluster shows the operational intent of

the attack propagation, if their execution traces consist of multiple contract

creations and self-destruction when calling several different Dapps); Attack

stage annotation that annotate transaction clusters’ attack stage based on

adversary’s operational intents. Throughout the analysis, annotators inten-

sively discussed with each other to ensure that all transaction clusters were

correctly understood and evaluated. In total, it took 5 human labors around

two weeks for data annotation.
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