Marrying Graph Kernel with Deep Neural
Network: A Case Study for Network Anomaly
Detection

Yepeng Yao'?", Liya Sul2", Chen Zhang', Zhigang Lu"2®)  and Baoxu Liu®2

! Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
{yaoyepeng, suliya, zchen, luzhigang, liubaoxu}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Network anomaly detection has caused widespread concern
among researchers and the industry. Existing work mainly focuses on
applying machine learning techniques to detect network anomalies. The
ability to exploit the potential relationships of communication patterns
in network traffic has been the focus of many existing studies. Graph
kernels provide a powerful means for representing complex interactions
between entities, while deep neural networks break through new foun-
dations for the reason that data representation in the hidden layer is
formed by specific tasks and is thus customized for network anomaly
detection. However, deep neural networks cannot learn communication
patterns among network traffic directly. At the same time, deep neural
networks require a large amount of training data and are computation-
ally expensive, especially when considering the entire network flows. For
these reasons, we employ a novel method AnoNG to marry graph kernels
to deep neural networks, which exploits the relationship expressiveness
among network flows and combines ability of neural networks to mine
hidden layers and enhances the learning effectiveness when a limited
number of training examples are available. We evaluate the proposed
method on two real-world datasets which contains low-intensity network
attacks and experimental results reveal that our model achieves signifi-
cant improvements in accuracies over existing network anomaly detection
tasks.

Keywords: Network Anomaly Detection - Deep Neural Network - Graph
Kernel - Communication Graph Embedding

1 Introduction

The Internet has become an important part of our society in many areas, such
as science, economics, government, business, and personal daily lives. Further,
an increasing amount of critical infrastructure, such as the industrial control
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systems and power grids, is managed and controlled via the Internet. However, it
is important to note that today’s cyberspace is full of threats, such as distributed
denial of service attack, information phishing, vulnerability scanning, and so
on. Recent news also points out that attackers can build large organization
consisting of different types of devices and bypass existing defenses by changing
communication patterns [6].

Despite these difficulties, network anomaly detection is still making progress.
Network anomaly detection systems identify network anomalies by monitoring
and analyzing network traffic and searching for anomalous flows with malicious
behaviors. Despite having high accuracy rates and low false alarm rates, these
systems are easily evaded by recent collaborative-based anomalies, even anoma-
lies with the similar packets as legitimate traffic. Moreover, existing detection
modules usually consider less about the communication relationship, such as the
communication pattern between inner and outer networks, so that it is difficult
to describe anomalies from single flow itself in network.

Collective network anomalies are major kinds of network anomaly nowadays
[12]. According to the communication volume of the traffic flows, individual
steps can be roughly classified into two types, namely high-intensity attacks and
low-intensity attacks. High-intensity attacks such as Smurf [9] transmit packets
at a high rate causing a sudden surge in traffic volume whereas low-intensity
attacks such as Slowloris [19] are high-level attacks that do not rely on intensity
and volume to breakdown network service. Other low-intensity attacks do not
attempt to completely disrupt the service but rather degrade the quality of
service over a long period of time to achieve economic damage or reduce the
performance of servers, indicates that all the packets involved in the attack are
not detected. In complex attacks, an attacker floods the target system with
low-intensity, highly targeted, and application-specific traffic.

Recent research has shown that the following challenges that are not tackled
in previous researches. We briefly describe two of the modern challenges for
network anomaly detection that we will address in this work.

Challenge 1: Low-intensity volume of network anomaly traffic might
seem innocuous. Most traditional methods analyze statistical changes of traf-
fic volume. The statistical features of the network flows contain information such
as the number of flows, the number of packets of the flow, the average length of
packets of the flow, the network protocol flags, and the duration of the flow. If
a statistical mode mismatch in those values is detected, the event is reported as
an anomaly. For example, if the statistical features of the destination port num-
bers suddenly increase, it is assumed that some hosts conduct port scanning.
However, the anomalous activities that may not increase the number of pack-
ets are not visible in a large network. Those volume-based anomaly detection
techniques, however, cannot detect low-intensity attacks.

Challenge 2: More advanced evasion techniques can conceal real
attacks. Even though some flow features have the ability to capture anomalous
traffic that has statistical variations of traffic volume, they cannot capture cor-
relations in communications between hosts because they focus on the statistics
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of traffic sent by individual hosts. For example, command and control communi-
cations, the major source of advanced cyber anomalies, consist of attackers that
originate attack commands. The attackers make up a cluster where they com-
municate with each other. With traffic statistics-based detection methods, we
can detect partial anomalies but cannot detect or capture the overall anomalies,
especially for the concealed network attacks.

By exploiting the above two challenges, we adopt communication graph em-
bedding method to represent the structural similarities of communication pat-
terns by calculating the similarities between graphs generated by network flows.
For the reason that network anomalies may not occur as one single action on a
single host, there may be many small seemingly innocuous multi-hosts behaviors.
Attackers might do several small probe actions that are temporally spaced or
they might initiate a massive denial of service attack. Each change of anomalies
has a specific pattern of a particular feature set.

In this paper, we investigate the benefit and efficiency of applying the graph
kernel embedding approach to improve the deep neural networks. OQur proposed
approach aims to improve the accuracy of network anomaly detection process
and analyze through an attributed communication graph by using communica-
tion graph features, which stores the representation of the status of the partic-
ipating networks in a specific time interval. Our contribution in this paper is
threefold:

— To understand the new network threat, we propose a novel network flow an-
alytics architecture for low-intensity network anomaly that can evade other
detection approach easily;

— To detect anomaly flows and improve the accuracy of network anomaly de-
tection process, we develop the first work to systematically combine graph
kernels with deep neural networks for network anomaly detection;

— To evaluate the proposed method, we build a working system to hold a sliding
time window view of the entire network based on the structural similarity
analysis of network flows. In this way, it is optimal for the application of
machine learning techniques. We thoroughly evaluate our system with two
real-world datasets and demonstrate that the proposed method effectively
outperforms the traditional machine learning solutions and the baseline deep
neural network detection solutions in terms of accuracy.

The rest of the paper is organized as follows. Backgrounds and previous work
related to this paper are discussed in Sect. 2. Sect. 3 described the threat model
and major approaches. The proposed anomaly detection framework is discussed
in Sect. 4 followed by the empirical evaluation in Sect. 5. Last, Sect. 6 concluded
this paper.

2 Background and Related Work

We first lay out the background information of network evasion attacks against
anomaly detection models. Then we review related prior research.
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2.1 Network Evasion Attack against Anomaly Detection Models

Since attackers have become more organized, skilled and professional, research
in network anomaly detection must always take into account the presence of an
evasion attack. While some detection papers are providing discussion on eva-
sion resistance, there is rarely any practical method to increase evasion resilient
capabilities of the anomaly detection models. In fact, the purpose of evasion
attacks is to move an anomalous flow to a benign one, or to attempt to mimic
a specific benign point. Therefore, the attacker attempts to modify the features
of the anomalous flow so that the anomaly detection model marks the flow as
benign.

The limitation of evasion attacks is performed in two ways. First, there could
be features that are not modifiable to the extent required to perform the attack.
There is also a limitation on how difference the anomalous activities can be
changed, because the activities still need to follow their original, anomalous pur-
poses. For example, the target IP addresses of network flows cannot be modified
arbitrarily, so the communication patterns of anomalous activities are relatively
stable. The evasion attack also needs understandings of what is considered be-
nign in the production detection model, which is usually not available.

2.2 Deep Neural Network based Network Anomaly Detection

Deep neural networks have been shown tremendous performance on a variety of
application areas, such as image, speech and video analysis tasks, while they are
high-dimensional inputs and have high computational requirements. For network
anomaly detection, deep neural networks increase the detection rate of known
anomalies and reduce the false positive rate of unknown anomalies.

Alom et al. [1] train deep belief network models for identifying any kind of
unknown anomalies in dataset and evaluated the performance on intrusion de-
tection datasets. Their proposed system not only detects anomalies but also clas-
sifies them and achieves 97.5% accuracy for only fifty iterations. Alrawashdeh et
al. [2] explore the anomaly detection capabilities of restricted boltzmann machine
and deep belief network. They outperform the former works in both detection
speed and accuracy and achieve a detection rate of 97.9% presenting machine
learning approaches for predicting anomalies with reasonable understood. As for
deep belief neural network [11], it achieves accuracy as high as 99% combining
neural networks with semi-supervised learning in a smaller percentage of labeled
samples.

In the case of Convolutional Neural Network(CNN)-based and Long Short-
Term Memory(LSTM)-based anomaly detection, Zhang et al. [20] propose a
specially designed CNN to detect network anomalies. They find only some pre-
processing is needed whereas the tedious feature extraction is done by the CNN
itself and the experimental results show that the designed CNN model has a
good performance. Chawla et al. [4] employ recurrent neural network(RNN) as
their model for host-based intrusion detection systems which determine legit-
imate behavior based on sequences of system calls. Kim G et al. [7] propose
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a system-call language-modeling method on host-based intrusion detection sys-
tems. Their method learns the semantic meaning and interactions of each system
call which has never been considered before and the validity and effectiveness
are shown on public benchmark datasets.

2.3 Graph based Anomaly Detection

Several graph-based and machine learning techniques have been investigated over
the last two decades for detecting network anomaly detection. Our previous
work [18] proposed an effective method for deep graph feature extraction to
distinguish network anomaly in network flows.

The graph kernel approach is a rapid feature extraction scheme and its run-
time scales only linearly in the number of edges of the graphs and the length
of the subgraph sequence, by converting a high-dimensional graph into a fea-
ture vector space. The scalar product of the two graphs in space measures their
similarity. Generally, graph kernels are utilized to define the similarity func-
tion of two graphs. One effective way is the Weisfeiler-Lehman(WL) kernel [16].
However, WL kernel only support discrete features and costs linear memory of
training examples. Other methods include depth graph kernel [17] and graph
invariant kernel [13] comparing based on the existence or counting of the small
substructures, such as the shortest path [3], graphlets, subtrees, and other graph
invariants [13]. We adopt general shortest path kernel as one possible labeling
procedure to compute receptive fields.

3 Threat Model and Our Approach

To better understand the efficiency of the method we proposed in this paper, we
describe the threat model and the defense model. The threat that we study as
a use case is a kind of the denial of service attack that exhausts the resources
using low-intensity traffic flows described in [8], seen in Fig. 1. We consider an
outside attacker that can send arbitrary network flows to a server or link that
is vulnerable to network anomalies. The attacker can exploit the vulnerability
by sending carefully crafted flows that will consume a significant amount of
the resources. The attackers’ goal is to occupy available resources by sending
multiple flows in parallel at a low intensity.

In low-intensity attacks, the attacker can use controller servers to attack the
targets. To achieve this goal, the attack assigns botnets controlled by his con-
troller servers to send legitimate, low-intensity network flows towards certain
target servers. Since anomalous flows are well-formed, they cannot be easily dis-
tinguished from legitimate flows through statistical features, such as the average
packet size. The attacker can also send legitimate flows to hide attack trace
among legitimate network flows. The attacker does not send numerous attack
flows within a very short time interval, because volumetric attacks with a high
intensity can be easily detected by network-based anomaly detection, and attacks
with low-intensity are already sufficient to affect the network.
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Fig. 1. A use case for threat model: a low-intensity version of the network anomalies.

3.1 Problem Definition

Given a set of network flows, we can detect several kinds of anomalous network
flows, but some kinds of anomalies can be evaded by modifying several statistical
flow features. In fact, similar communication patterns represents on communica-
tion graphs, for example, when the network flows come from the similar sources
and go towards the similar destinations.

Communication graphs are used as abstraction of network communication
patterns. Hosts are represented by vertices, while communication between them
is indicated by edges, weighted by the statistical features of exchanged data.
Given a directed multigraph G < V, E >, the purpose of the anomaly detection
is to relate a set of vertices to a set of edges. An anomaly at time interval [¢, ¢+ 1]
attacks a set of host 4 € F, affecting the connectivity of a set of vertices
Vawy € V. As described in [8], the goal of the anomaly detection is to find the
malicious host set and detect the malicious communication flows until ¢ + 1.

Assume that p(e) expresses the probability of e acting as a malicious host
at time interval ¢, p(v) is the probability of v being an target at time interval
[t,t+ 1], and p(e,v) is the probability of e attacking v at this time interval. The
goal is to seek to minimize the total possibility of p(e) over all time intervals. In
the neural networks model, system needs to extract the information about p(v)
and seek to minimize p(v). However, attackers are able to do little changes to
evade the single time interval detection without much effort. While it is difficult
to evade from the whole communication graph pattern which graph kernels have
the ability to describe, that is, graph kernels can capture the relationship between
p(v) and p(e), that is p(e,v).

For estimating the similarity between communication patterns on a pair of
communication graphs, we adopt graph kernel functions. It relies on graph com-
parison. It is clear that there is no link between these network flows because
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they happened at different time. We construct the communication graph for
each network flow using a specific time interval.

3.2 Communication Graph Embedding

Most existing machine learning or neural network algorithms are generally ap-
plicable to vector-based data. In order to enhance interpretability of deep neural
networks and learn accurate graph feature embedding, it is necessary to extract
the features of graph similarity data in advance. Algorithm 1 presents the details
of communication graph feature representation.

First, we extract the statistical flow features. These features are extracted
from each network flow, which directs source IP address to destination IP address
and contains statistical features that are commonly used for anomaly detection.

Then we construct the communication graph for each network flow by a
specific time interval. Given a set of graphs, many algorithms have been designed
and widely used for similarity analysis on graphs. While determining all paths is
NP-hard, finding special subsets of paths is not necessarily. Determining longest
paths in a graph is also NP-hard. To overcome this problem, the shortest path
similarity measures [3] are selected in this paper, which capture diverse aspects
of the network communication pattern and can be efficiently computed.

According to the sorted hosts and the length of shortest paths, the shortest
path compares the similarity of two communication graphs. Using the network
flows of each pair of hosts noted as ¢ and j constructs the similarity metrics.
The shortest path d(i, j) represents the shortest distance from host ¢ to j. With
low resolution the vertices are more likely to interact which is what our model
wants to detect recorded as p(h,v) (seen in Section 3.1).

At the same time, the shortest path also describes the communication sit-
uation of pair of hosts as toward or away from each other in the network flow
graph. As discussed in [5], given the small world property of networks, we can
limit the distance searched before stopping and supposing no other paths.

4 Graph Kernels Combine Deep Neural Networks
Framework

We propose AnoNG framework by combining deep neural networks and graph
kernels from two different angles. We adopt the LSTM and CNN as our baseline
deep neural network models because they are effective for network anomaly
detection. There are two ways to extend the kernel vectors for DNNs. We can
append the kernel vectors either to input vectors, or to the softmax classifier. To
determine which strategy works best, we perform a pilot study. We found that
the first method causes the dimension of features turn to be too large, so we use
dimensional reduction method before inputting the DNN. While for the second
method, the softmax classifier tends to heavily rely on the kernel vectors, and
the result is similar to the one only given kernel features, so we design a weight
variable to calculate the final results. The architecture of AnoNG framework can
be seen in Fig. 2.
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Algorithm 1 Communication Graph Embedding

Input:
A network communication graph set {Gi,G2,...,Gn} with N communication
graphs;

Output:
A |N| x |N| kernel matrix Ksp as similarity features with Kgp, assigning to Gy
as its embedding feature for similarity measurement;

1: Computing the shortest path graphs S < V, E > of each network communication
graph: Where the weight of each edge in E is equal to the length of the shortest
path between the corresponding vertices in G < V, E >

2: Computing the graph kernel matrices Kgp for each pair of graphs: For each pair
of graphs G; and Gz with S; < V,E > and S < V', E' >

Ksp(G1,G2) = ZeeE Ze'eE’ K(ese)
where k is shortest path kernel defined on the edges of S1 and Sz, which measures
the similarity between local sub-structures centered at e and e’
3: Computing the kernel matrix for the NV graphs: Compute the kernel matrices Ksp.

Trai Predict
Network Traffic rain redic

» Deep Neural Network ———»
Flows
Input [Hidden|Output
Extract Layer |Layers| Layer

A
Communication ?
Graph Kernel

Fig. 2. Overview of the network anomaly detection framework using deep neural net-
works and graph kernels (AnoNG).

4.1 Integrating Graph Kernels at Input Level

At the input level, we use the evaluation outcomes of graph kernels as features
fed to DNN models as Fig. 3(a). The number of graph features for network
anomaly detection can be different in detailed situation. We extract network
flow features according to effectiveness, and graph kernels’ number can change
depending on computational efficiency.

Because of the conflicting situations illustrated above, we cannot directly add
or multiply the kernel vectors to flow features. To solve this issue, we extend the
flow features with kernel features to form aggregated features as the input of
DNNs.
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4.2 Integrating Graph Kernels at Output Level

At the output level, graph kernels are used to improve the output of DNNs
in Fig. 3(b). Since the graph kernels used in the input level only extend the
statistical network flow features, we can also dig further expression by DNNs.
So we combine the softmax classifier results of DNNs as the final results.

For instance, the softmax classifier of graph kernels can output the proba-
bility distribution K, = (Kp1, Kp2) of two classes. DNN outputs the probability
distribution N, = (Np1, Np2) for two classes. We define the final probability of
the label value for a network flow is:

p:ale+a2Np (1)
where a; + a2 = 1 and K, is the probability distribution produced by the graph
kernels and N, is the probability distribution produced by the baseline deep
neural network model. And a; and as are trainable weights indicating the overall
confidence for anomalous or benign labels. Here we assign 0.1 and 0.9 for original
trainable weights and use 0.1 as interval. We modify 0.1 as interval when training
a1 and ay instead of more precise interval because using 0.1 is precise enough for
the difference of two classes. Actually, using more precise interval such as 0.01
has the same effect as interval 0.1.

Combination
Function

———————— Graph Kernel
Feature

r—-———">-—-7771
:GraPhKerneI : @ @ @

Fig. 3. Combination of graph kernels and deep neural networks.
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5 Evaluations

In this section, we evaluate the proposed AnoNG framework. To evaluate the
anomaly detection performance of our proposed AnoNG detection module, we
adopt the UNSW-NB15 [10] dataset and the CIC-IDS-2017 [15] dataset, respec-
tively. Both the datasets labeled the network anomaly flows, which means we
have ground truth of the traffic. Then, we divide each dataset into training and
test data sets using a ratio of 70% and 30%.

5.1 Dataset Description

UNSW-NB15 Dataset: This dataset is created by establishing a synthetic en-
vironment at the UNSW cybersecurity lab. The data presents a mixture of the
real modern normal and the contemporary synthesized attack activities of the
network traffic. It had 47 features including new low-intensity attack scenarios
and 9 significant series of the cyberattack. We select only 8 statistical network
flow features from this dataset, namely dur, sbytes, dbytes, Sload, Dload, Spkts,
Dpkts, Sintpkt, Dintpkt.

CIC-IDS-2017 Dataset: This dataset is a newer dataset that contains a more
recent form of anomalies such as high-intensity high level layer attacks generated
using botnets and low-intensity attacks generated using Slowloris tool. We also
select 8 statistical network flow features from this dataset, namely Flow Dura-
tion, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets,
Total Length of Bwd Packets, Flow Bytes/s, Flow Packets/s, Average Packet
Size.

5.2 Experimental Environment

We implemented a proof-of-concept version of our AnoNG framework (see Sec-
tion 3 and Section 4). Python3, Scikit-learn and Keras with TensorFlow backend
are used as the software frameworks, which are run on the Ubuntu 16.04 64-bit
OS. The server is a DELL R720 with 16 CPU cores, 128 GB of memory and
NVIDIA Quadro GPU. To training the deep learning methods, we set the batch
size to 128, the learning rate is set to 0.001, the epochs of training as 10, and
the dropout rate is set to 0.5.

For evaluation, we report precision, recall, and F1-score, which depend on
the four terms true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) for the anomaly detection results achieved by all methods.

We conduct three experiments: baseline DNNs, integrating graph kernels at
input level of DNNs, and integrating graph kernels at output level of DNNs on
two real-world datasets. We select ¢ as 60 seconds as the time window to con-
struct communication graphs as it was shown as a suitable classification point.
All experiments were repeated 10 times and we report the means of evalua-
tion matrices for all algorithms. The best results are bolded. For the compared
methods, both LSTM and CNN are considered as baselines. To provide a better
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overview of the performance of the baseline approach on the statistical network
flow features, the overall precision, recall and F1-score are presented in Table 1.

We set dimensions of the CNN layers to input-128-256-128-output for both
datasets. Dimensions of the LSTM layers are set to input-128-256-128-output,
where the output is the statistical feature dimension, which varies between
datasets. All layers are densely (fully) connected. To training the deep learn-
ing methods, we set the batch size to 128, and set the learning rate to 0.001.
The epochs of training is set to 10, and the dropout rate is set to 0.5. The ADAM
optimizer is adopted for variant of gradient descent.

Both the datasets are divided into two sets: training set and test set, which
are the mixture of both anomalies and benign ones. Then, a deep neural network
model is trained to predict on the training set and the prediction errors on the
training set are fit to a multivariate Gaussian using maximum likelihood estima-
tion. The loss function that we adopt is the sigmoid cross entropy. The threshold
for discriminating between anomalous and benign values is then determined via
by maximizing the accuracy value with respect to the threshold. At last, the
trained model is then used to predict on the test set and the results are recorded
and compared.

5.3 Performance on DNN with Graph Kernels at Input Level
(GKIL)

Table 1 details the results of the experiments. According to our experimental re-
sults, we believe that the AnoNG framework is successful because it consistently
generates highly accurate results in both real-world datasets used to identify
anomaly and benign flows. From the results, we can see that AnoNG signifi-
cantly outperforms baseline methods. We also compare AnoNG’s accuracy on
the network anomaly detection task against the random forests classifier pro-
posed in [15] and [14].

It is noted that the communication graph features improve the recall increas-
ing from 0.90105 to 0.99757 and the F1-score increasing from 0.93292 to 0.96990
of CNN model in UNSW-NB15 dataset, as well as the precision increasing from
0.95420 to 0.98847 and the Fl-score increasing from 0.95719 to 0.98776 of LSTM
model in CIC-IDS-2017 dataset.

5.4 Performance on DNN with Graph Kernels at Output Level
(GKOL)

To understand the necessity of graph kernels, we further measured the perfor-
mance of the GKOL algorithm. The results for the GKOL algorithm of our
validation are equally promising.

After training and obtaining representations of statistical network flow fea-
tures and graph kernels, for each DNN model, we select trainable weights of aq
from 0.1 to 0.9. The results of precision, recall and F1-score are shown in Fig. 4,
respectively, from which we can observe that GKOL is consistently above base-
line methods, and achieves statistically significant improvements on all metrics.
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(b) CIC-IDS-2017 dataset.

Fig. 4. Precision, recall and Fl-score with respect to parameter a;

Take a; = 0.6 as an example, LSTM with GKOL outperforms best performance
in CIC-IDS-2017 dataset. Therefore, we can draw the conclusion that GKOL
maintains a more decent performance in anomaly detection tasks compared with
other methods.

5.5 Discussions

AnoNG is designed based on learning the features of network communication
graphs. For one thing, the evaluation for this approach verifies its capability
to effectively detect existing low-intensity attacks in large-scale networks as its
profile involves communication patterns which can be extracted via construct-
ing the communication graphs. For another, graph kernel embedding aims at
find small variations on communication patterns between benign and anoma-
lous flows. If the variances between these features are not high, the performance
of this technique will decrease, the feature evaluation methods can be further
adopted to select the most highly varied features by testing these features and
their principal components.
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Table 1. Precision, recall and Fl-score over the datasets of different methods. The
best performance is shown in BOLD.

Evaluation UNSW-NB15 CIC-IDS-2017

Methods Precision| Recall |F1-score|Precision| Recall |F1-score
LSTM Baseline 0.97999 |0.99635 | 0.98810 | 0.95420 | 0.96020 | 0.95719
LSTM+GKIL 0.97576 | 0.99085 | 0.98325 | 0.98847 | 0.98705 | 0.98776
LSTM+GKOL 0.97682 |0.99896| 0.98776 | 0.97182 |0.99882| 0.98514
CNN Baseline 0.96713 | 0.90105 | 0.93292 | 0.86467 | 0.96081 | 0.91021
CNN+GKIL 0.94372 |0.99757| 0.96990 | 0.97657 | 0.95929 | 0.96786
CNN+GKOL 0.95294 | 0.95305 | 0.95300 | 0.94720 | 0.48977 | 0.64568

Random Forests [15] [14]]  0.999 0.910 | 0953 | 098 [ 097 [ 097

6 Conclusion

In recent years, graph-based or DNN-based network anomaly detection has at-
tracted more and more research attention. In this paper, we propose a novel
framework called AnoNG to solve new network anomaly detection tasks by in-
tegrating graph kernels with deep neural networks, then apply it to the network
anomaly detection problem and investigate different methods of combining deep
neural networks with graph kernels. Experiments show that AnoNG outperforms
the existing deep neural network models on two real-world network anomaly de-
tection datasets.
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