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Abstract—Network communication data are high-dimensional
and spatiotemporal, and their information content is often
degraded by common traffic analysis methods. For long-term
network attack detection based on network flows, it is important
to extract a discriminative, high-dimensional intrinsic represen-
tation of such flows. This work focuses on a hybrid deep neural
network design using a combination of a convolutional neural
network (CNN) and long short-term memory (LSTM) with graph
similarity measures to learn high-dimensional representations
from the network traffic. In particular, examining a set of
network flows, we commence by constructing a temporal com-
munication graph and then computing graph kernel matrices.
Having obtained the kernel matrices, for each graph, we use the
kernel value between graphs and calculate graph characterization
vectors by graph signal processing. This vector can be regarded
as a kernel-based similarity embedding vector of the graph that
integrates structural similarity information and leverages efficient
graph kernel using the graph Laplacian matrix. Our approach
exploits graph structures as the additional prior information,
the graph Laplacian matrix for feature extraction and hybrid
deep learning models for long-term information learning on
communication graphs.

Experiments on two real-world network attack datasets show
that our approach can extract more discriminative representa-
tions, leading to an improved accuracy in a supervised classi-
fication task. The experimental results show that our method
increases the overall accuracy by approximately 10%-15%.

Index Terms—Long-term network attack detection, spatiotem-
poral deep learning, graph kernel, graph signal processing,
dimensionality reduction

I. INTRODUCTION

Modern enterprises are facing the challenge of sophisticated

attacks, such as advanced persistent threats (APTs). These

long-term network attacks on enterprise networks are one type

of fundamental threat that evolves and constitutes the latest

attack vectors. Network traffic analysis-based attack detection

discovers aberrant behavior caused by attacks and unusual

communication patterns. This approach models both spatial

and temporal information of network behaviors to describe the

essential factors characterizing such behaviors. The approach

does not involve time lags between emerging threats and

deployed security devices, as is the case for standard de-

fenses that are built upon retrospective detection of suspected

‡Corresponding author: luzhigang@iie.ac.cn

attacks. The advantage of network behavior detection is its

independence from attack signatures/patterns. This property

potentially enables proactive defenses against threats with new

and unknown patterns.

With the continuous growth in the number and diversity of

Internet hosts and applications, it is becoming more difficult to

understand communication patterns of end hosts and network

applications for efficient network management and security

monitoring. At the same time, network attack detection re-

search uses aggregate fundamental variables of network flows,

such as speed, volume, and density, as indicators to measure

the current flow of traffic and detect the latent threat [1]. With

a large number of features, it has been a major challenge to

understand communication patterns precisely.

Several methods have been used to perform dimensionality

analysis of network data, e.g., principal component analysis

(PCA) and its numerous variants. By modeling network flow

data as signals residing on communication graphs, several

methods have been proposed to apply the recent graph signal

processing for dimensionality reduction [2] and for statis-

tical property representation [3] for network attack flows.

In addition, it has been recognized that there are patterns

of communication links, statistical dependencies and causal

interactions between nodes within a sensor network [4].

In this paper, inspired by the recent advances in graph

signal processing and deep learning, we propose a long-term

network attack detection framework using high-dimensional

representations of the temporal communication graph. Our

approach overcomes two major challenges in constructing

a topology- and context-sensitive model for network attack

detection.

Challenge 1: Large-scale network volume and com-

plex topology. The large scale of the network in the high-

dimensional detection space makes it difficult to identify useful

features and a good hyperplane for traditional classifiers. Our

approach extracts graph kernels from the temporal communi-

cation graph and reduces the high-dimensional kernel space

to a constant-size low-dimensional detection space by graph

signal decomposition.

Challenge 2: Long-term detection of stealthy attacks.

Various attacks in real-world networks lead to diverse commu-

nication behaviors. Stealthy attacks can often obfuscate their
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attack behaviors, exploit the imprecision of normal boundaries

generated by traditional detectors and subvert detection. For

example, if the statistical feature of the destination port number

suddenly increases, it is assumed that some hosts are perform-

ing port scanning. However, the activities that may not increase

the number of packets are not visible in a large network. Our

STDeepGraph method extracts spatial and temporal features

from network flows and then performs precise characterization

of network behaviors.

We present STDeepGraph – a Spatial-Temporal combined

Deep learning on communication Graph design – to recog-

nize long-term network attack behaviors and perform precise

characterization of the benign and attack network traffic flows.

We approach the long-term network attack detection problem

from the machine learning perspective and use graph similarity

feature learning solutions for communication graph analysis.

Our contributions are threefold:

• First, we model the network communication structure

with suitable temporal communication graphs.

• Second, we propose a new long-term network attack de-

tection framework that integrates deep learning methods

with graph kernels; the system is trained end-to-end in a

supervised way.

• Third, we perform extensive experiments to demonstrate

that our model can extract more discriminative represen-

tations of network flow data.

The rest of the paper is structured as follows. Section II

formulates the threat model. The STDeepGraph method is

detailed in Section III. Section IV reports our experimental

evaluation. Section V reviews the related studies. Our conclu-

sions and directions of future research are described in Section

VI.

II. THREAT MODEL

We formalize the long-term network attack threat as follows.

An attack flow fj ∈ F is a timestamped capture recorded at

timestamp j, where F denotes the set of all unique flows,

and |F | denotes the size of F . A long-term attack trace can

be converted into a communication graph of flows ordered by

observation time, gi = f
(i)
1 , f

(i)
2 , ..., f

(i)
n . We define the to-

be-detected flow as the target flow, denoted as ftarget. Each

target flow ftarget is associated with a number of already

observed security events denoted as l. The problem is to learn

a structural similarity function f : f1, f2, ..., fl → ftarget
that accepts a long-term sequence f1, f2, ..., fl and detects

the target flow ftarget for a given network trace. Note that

our problem definition is a significant departure from previous

approaches that accept only a single flow.

We believe that an attack detection system should be capable

of understanding data and producing results, given long-term

network flow sequences as the context; hence, our threat model

is a better formulation in line with real-world long-term attack

scenarios.

III. STDEEPGRAPH METHODOLOGY

In this section, we introduce STDeepGraph, which is de-

signed based on the proposed deep neural network over the

graph-based similarity feature representation, as shown in Fig

1. The main intuition behind our approach is to map commu-

nication topologies in time interval t to graphs, with nodes

representing communication endpoints and edges representing

flows.

A. Preprocessing of Network Flow Data

a) Temporal Communication Graph Construction: Net-

work communication patterns always demonstrate strong spa-

tial dependency. First, the communication graph needs to be

constructed based on the flow records collected from the

Internet boundary routers in a specific time interval. Unlike

traditional statistical flow features, this step is based on IP

addresses and does not require information from packet con-

tents and statistical network flow features. Each IP address is

considered an entity and processed as an individual node. Each

node is strongly influenced by its neighbors. The main focus

is on building a graph to represent communication behavior

similarity of IP addresses on one side based on their connec-

tivity with the IP addresses on the other side. We give an

example of the temporal communication graph in Fig. 2. The

objective of the graph construction approach is to represent

structural similarity of a single network flow within the specific

time interval based on the related communication pattern. The

details of the algorithm are presented in Algorithm 1.

Algorithm 1 Temporal communication graph construction

Input:

The network flows Fn for each specific time interval;

Output:

The temporal communication graph TCGn = (V,E);
1: forforfor all f ∈ Fn, extract the source IP address SrcIP and

destination IP address DestIP ;

2: ififif SrcIPn ∈ V thenthenthen

3: V := SrcIPn+1 ∪ V ;

4: E :=< SrcIPn → SrcIPn+1 > ∪E;

5: E :=< DestIPn → SrcIPn+1 > ∪E;

6: else ifelse ifelse if SrcIPn /∈ V thenthenthen

7: V := SrcIPn ∪ V ;

8: end ifend ifend if

9: ififif DestIPn ∈ V thenthenthen

10: V := DestIPn+1 ∪ V ;

11: E :=< DestIPn → DestIPn+1 > ∪E;

12: E :=< SrcIPn → DestIPn+1 > ∪E;

13: else ifelse ifelse if DestIPn /∈ V thenthenthen

14: V := DestIPn ∪ V ;

15: end ifend ifend if

16: ififif SrcIPn /∈ V andandand DestIPn /∈ V thenthenthen

17: E :=< SrcIPn → DestIPn > ∪E;

18: end ifend ifend if

19: end forend forend for

20: return TCGn;
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Fig. 1. Schematic representation of the process of a deep neural network on a communication graph. (a) Temporal communication graph construction;
(b) Mapping graphs into the graph kernel matrix; (c) Graph signal decomposition; (d) 1D-CNN for learning the probability distribution; (e) LSTM on the
combination of flow statistical features and probability distribution sequences for learning temporal dependencies.

Fig. 2. Toy example of the temporal communication graph.

b) Communication Graph Distance Kernel: After com-

bining all network flows in a time interval into a graph

structure, it is natural and reasonable to formulate networks

as graphs mathematically. However, even with convolutions

on graphs, this approach can only capture the spatial structure

approximately due to compromises of data modeling.

A matrix of pairwise flow-to-flow similarities is created

from the communication graphs. We select the shortest path

similarity measures that capture diverse aspects of the network

communication topology and are efficiently computable. The

shortest path similarity compares the sorted endpoints and the

lengths of the shortest paths that are common between two

graphs. Each metric is a function of nodes corresponding to

the edge, while N(n) indicates the nodes adjacent to n. While

determining all paths is an NP-hard problem, finding special

subsets of paths is not necessarily so. Determining the longest

paths in a graph is again an NP-hard problem, as it would

allow deciding whether a graph contains a Hamilton path or

not.

The shortest path d(i, j) represents the distance of the

shortest path from i to j, reflecting the expectation that

nodes with low degrees of separation are likely to interact.

In a communication graph context, the shortest path can also

encode the communication of two nodes toward or away

from each other over time. The calculation of the shortest

path can potentially be demanding, but given the small world

property of networks, we can limit the distance searched by the

algorithm before stopping and presuming that no path exists.

Using nonlinear feature mapping ϕ, a graph in a high-

dimensional space can be mapped into a low-dimensional

feature space so that the graphs become linearly separable in

this new vector space [5]. Let a graph set G contain N graphs;

an N×N kernel matrix KKK(Gi,Gj)N×N can be calculated using

the formula KKK(Gi,Gj) = 〈ϕ(Gi), ϕ(Gj)〉.
Numerous graph kernel functions have been defined to mea-

sure the similarity between two graphs in previous research.

The shortest-path kernel decomposes a graph into paths [5]

and counts the co-occurrence of paths in two graphs. Let

PG represent the set of all shortest paths in graph G, and

let p ∈ PG denote a triplet (s, e, l), where l is the length

of the path and s and e are the starting and ending vertices,

respectively.

In this paper, we choose the shortest-path kernel to map

graphs into a high-dimensional space. The shortest-path kernel

matrix between graphs Gi and Gj can be defined as:

KKKsp(Gi,Gj) = 〈ϕsp(Gi), ϕsp(Gj)〉 (1)

where the n-th component of ϕsp(Gi) contains the frequency

of the n-th triplet occurring in graph Gi. Vector ϕsp(Gj) is

defined analogously for Gj . With the help of the shortest-path

kernel, each Gi ∈ G can be converted to vector ϕ(Gi), and an

N×N kernel matrix KKK that describes the similarity among the

graphs is available.

c) Similarity Matrix Decomposition: Within the graph

set, the process of structural similarity feature learning is to

convert the graph data into the vector space with the graph

kernel function and then reduce its dimension for further

analysis. The emerging field of graph signal processing offers

a method for applying signal processing approaches to large

datasets by representing the signals on graphs [6].

Notation. Before describing the graph structural similar-

ity feature learning method, we introduce some notation.

Throughout this part, the following notation is used: the capital

non-bold letter X denotes a scalar variable, the lowercase bold

letter xxx represents a vector, and the capital bold letter MMM
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denotes a matrix. In this paper, we use the graph kernel as

the similarity matrix and adopt the signal graph to convert

structured data to vector-type data. Informally, a kernel is a

function of two objects that measures their similarity. Mathe-

matically, it corresponds to an inner product in a reproducing

kernel Hilbert space.

Dimensionality Reduction. To extract the useful features

from the graph similarity matrix, we propose graph Laplacian

matrix learning based on graph signal processing for feature

dimensionality reduction. Graph signal processing seeks meth-

ods to analyze and process graph data. The most effective

function in graph signal processing is the graph Laplacian.

Given a graph kernel matrix KKK, the corresponding real-

valued and symmetric graph Laplacian matrix is defined as:

LLL =DDD −KKK (2)

where DDD is the diagonal matrix with diagonal elements that

contain the degree values, defined as:

DDDij =

{∑N

j=1KKKij , i = j,

0, i �= j
(3)

This equation indicates that an input function defined on

the vertex domain of a graph can be converted into the

corresponding graph in the spectral domain by using the

concept of Fourier analysis on graphs.

LLL =

N∑
i=1

λiuuuiuuu
T
i (4)

where λi ∈ ΛΛΛ denotes the set of eigenvalues and uuui ∈ UUU
denotes the set of orthogonal eigenvectors associated with the

Laplacian matrix. Set UUU constitutes the basis functions for the

underlying signal defined on the graph, while ΛΛΛ represents

the corresponding frequencies. The graph signal ssst at time t
is decomposed into the graph of Fourier domain components

denoted by ŝ̂ŝst at each time interval using the eigenvectors uuuit

of the corresponding Laplacian matrix at LLLt, as given by [7]:

ŝ̂ŝst = UUUT
t ssst (5)

where UUU t is a matrix composed of the eigenvectors of LLLt.

A graph signal ssst is regarded as smooth with respect to the

graph kernel matrix if most of its energy is concentrated in

the low frequencies [8]. In other words, a smooth signal ssst
gives rise to a smaller value of graph smoothness regularizer

sssTt LLLtssst defined by:

sssTt LLLtssst =

N∑
i=1

λi(uuu
T
itssst)

2 (6)

The graph Laplacian matrix plays an important role in de-

scribing the underlying structure of the graph signal. The graph

signals are modeled by a graph kernel matrix that encodes the

similarity between communication graphs. The graph kernel

matrix measures N communication graphs, where N is the

dimensionality of a graph signal. Individual low-dimensional

representations of the graph signals are subject to classification

independently. Low-dimensional representations could reduce

the deep learning complexity in space and time. Within the

graph set, the objective of similarity feature extraction is to

convert the graph data into the N ×N vector space with

the graph kernel function and then reduce its dimensions

for further detection. The emerging field of graph signal

processing offers a method for applying signal processing

approaches to large datasets by representing the signals on

graphs [6].

B. Long-Term Network Attack Detection

a) CNN for Spatial Feature Extraction: Accordingly, to

extract spatial patterns and features in the graph structure

similarity domain, the graph signal sequence ssst converted from

the graph similarity matrix is used directly in the CNN model.

A convolution operation involves a filter www that is applied to

a window of graph signals to produce a new feature map ccct,
defined as:

ccct = φ(www · ssst + bbb) (7)

where φ is the nonlinear rectifier function, and bbb is the bias.

After convolution, pooling is applied to the sequence. Then,

a maximum-over-time pooling operation is applied over the

feature map, and the maximum value ĉ̂ĉc = max{ccc} is taken as

the next feature, which can be mapped to a one-hot vector to

obtain the probabilities of benign communication and attacks.

1D Convolution Layer. To process a given input graph

signal vector, many filters are convolved with the normalized

representations of the patches contained in the graph.

Pooling Layer. We then apply a max-pooling operation over

the feature map, thus retaining only the maximum value of ccc,
max(ccc1, ccc2, ..., cccPmax) as the signal associated with w.

We use three 1D convolution layers and two pooling layers

to extract spatial features. These features form the penultimate

layer and are passed to a fully connected softmax layer, the

output of which is the probability distribution of the graph

signal sequence. It should be noted that both the convolution

filter and pooling layers are one-dimensional operations, which

is the key characteristic of 1D-CNN.

b) LSTM for Temporal Features Extraction: We adopt

a modified LSTM recurrent neural network that learns the

dynamic temporal dependencies present in network flow. In

this model, the gate structure in the traditional LSTM and the

hidden state are unchanged, but the input is replaced by the

combined statistical network flow features and spatial features

produced by the 1D-CNN in Section III-B, which are reshaped

into a vector. The network still consists of five subunits: input

gate iii, forget gate fff , output gate ooo, the candidate hidden

representation ggg and the internal memory of the LSTM cell ccc.
They are computed by:

iiit = σ(wwwi · 〈rrrt, ccct〉+ uuui · hhht−1 + bbbi)

fff t = σ(wwwf · 〈rrrt, ccct〉+ uuuf · hhht−1 + bbbf )

ooot = σ(wwwo · 〈rrrt, ccct〉+ uuuo · hhht−1 + bbbo)

gggt = tanh(wwwg · 〈rrrt, ccct〉+ uuug · hhht−1 + bbbg)

ccct = ccct−1 � fff t + gggt � iiit

(8)
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where www and uuu are learnable weight matrices and bbb is a

learnable bias vector.

A final softmax layer is added to complete the architecture.

The LSTM model is repeatedly trained using the combined

statistical network flow features and spatial features, and then,

they are classified into benign flow and attack flow. Our

proposal of this new deep neural network architecture is

motivated by better performance of graph signal processing for

graph similarity feature extraction, as shown in the evaluation

in Section IV.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct a set of experiments on two

real-world network attack datasets UNSW-NB15 [9] and CIC-

IDS-2017 [10], described in Table I.

A. Dataset Description

UNSW-NB15 is a public dataset created by establishing a

synthetic environment at the UNSW cybersecurity lab. The

data represent a hybrid of contemporary real-world normal and

synthesized attack network traffic. The data have 47 features,

including new long-term attack scenarios and 9 significant

families of network attacks.

CIC-IDS-2017 is a newer public dataset that contains a more

recent form of stealthy attacks including low-frequency and

long-term network attacks, such as DDoS, DoSGoldenEye,

DoSHulk, and DoSSlowhttptest, generated by botnets and

tools. This dataset is provided by the Canadian Institute for

Cybersecurity (CIC).

Both datasets are newer attack detection datasets; we divide

them into training and test data sets using the ratio of 60% to

40%, respectively. It is important to note that training datasets

and test datasets originate from different collections so that the

general prediction capability of STDeepGraph can be tested on

data that are not part of the training data.

TABLE I
DESCRIPTION OF THE TWO DATASETS

Name # Dimensions # Instances Attack Ratio (ρρρ)

UNSW-NB15 47 2,540,044 ρ = 0.145

CIC-IDS-2017 82 2,830,743 ρ = 0.167

B. Experimental Setup

We implemented a proof-of-concept of our proposed frame-

work using the software frameworks Keras, NetworkX and

Scikit-Learn, which were run on Ubuntu 16.04 64-bit OS.

For convenience, we set CNN network dimensions to

s/128/256/128/c for both datasets, where s is the graph

similarity dimension, which depends on the preset time in-

terval t. The LSTM network dimensions are set to (r +
c)/128/256/128/2, where c is taken from the output of the

CNN, and r is the statistical feature dimension that varies

between datasets. All layers are densely (fully) connected.

To train the deep learning methods, we set the batch size to

128 and the learning rate to 0.001. The number of epochs of

training is 10, and the dropout rate is set to 0.5. The ‘Adam’

optimizer is used for a variant of gradient descent. The time

interval t is 60s.

The learning performance of the model will be measured

using the evaluation matrix of the classifier. For evaluation,

we report the accuracy (ACC), precision (PR), detection rate

(DR, namely, recall) and the false alarm rate (FAR).

C. How Does the CNN-LSTM Combination Model Help?

To quantitatively evaluate our approach, we report the

comparison to baseline methods for detecting performance

characteristics. Table II lists the results of experiments. The re-

sults show that our method significantly outperforms baseline

methods. The proposed method achieves the best performance

on the UNSW-NB15 and CIC-IDS-2017 datasets, with 98.6%

and 99.4% accuracy on the test set, respectively. It is also

noted that our method increases the accuracy by approximately

10%-15% and decreases the FAR below 10%; additionally,

the precision increases by approximately 2%-13% for both

datasets.
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(a) Test accuracy curves.
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(b) Test loss curves.

Fig. 3. Deep neural network testing process for the two datasets. Results for
UNSW-NB15 are on the left, and those for CIC-IDS-2017 are on the right.

Fig. 3 shows the accuracy and loss curves versus the number

of epochs during testing. Note that we show the accuracy

curves of the original CNN, the original LSTM and our

proposed method. Our proposed method clearly has a better

learning curve.

Based on the results and analysis above, we can conclude

that the proposed model can achieve an outstanding perfor-

mance.

D. How Effective is STDeepGraph Compared with Traditional

Machine Learning Techniques?

We evaluate the effectiveness of STDeepGraph on both

datasets and compare our results on the CIC-IDS-2017 dataset

with those of several state-of-the-art machine learning de-

tection models described in [10]. In terms of precision and
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TABLE II
EVALUATION OF THE OVERALL PERFORMANCE. THE BEST PERFORMANCE FOR EACH DATASET IS SHOWN IN BOLDBOLDBOLD.

Dataset Only CNN Only LSTM Our Method (STDeepGraph)
Name ACC PR DR FAR ACC PR DR FAR ACC PR DR FAR

UNSW-NB15
Benign

0.887
0.535 0.788 0.212

0.976
0.979 0.994 0.149

0.9860.9860.986
0.9880.9880.988 0.9960.9960.996 0.0830.0830.083

Attack 0.535 0.788 0.099 0.956 0.851 0.006 0.9670.9670.967 0.9170.9170.917 0.0040.0040.004

CIC-IDS-2017
Benign

0.842
0.865 0.961 0.750

0.928
0.954 0.960 0.230

0.9940.9940.994
0.9950.9950.995 0.9980.9980.998 0.0250.0250.025

Attack 0.561 0.250 0.039 0.795 0.770 0.039 0.9910.9910.991 0.9750.9750.975 0.0020.0020.002

detection rate, we observe that our proposed STDeepGraph

method can outperform the alternative detection models.

To illustrate the performance advantage of our model, we

compare it with our reproduction of the random forests model

illustrated in [10] using statistical features for detection on

the two datasets. For the random forests method and the

STDeepGraph method, we train models on the respective sets

of hyperparameters and choose the model that has the best

performance.

Compared to the random forest method, our STDeepGraph

method shows an excellent capability of dealing with long-

term attacks. The ACC, PR, DR and FAR metrics of both

models on the test dataset are shown in Table II. Our pro-

posed STDeepGraph method achieves higher average accu-

racy, higher average detection rates and much lower average

false alarm rates on the two datasets than does the ran-

dom forests model. For the UNSW-NB15 and CIC-IDS-2017

datasets, the respective accuracy values are approximately

0.986 and 0.994; the detection rates are approximately 0.956

and 0.986; and the false alarm rates are approximately 0.044

and 0.013.

E. Discussion

Based on our evaluation results, we believe that the pro-

posed approach is successful because it produced highly

accurate results consistently for both datasets used in terms

of detecting attack and benign network flows and correctly

detecting long-term attack scenarios such as DosSSlowhttptest,

DoSslowloris, and DoSHulk.

On the one hand, STDeepGraph is designed based on iden-

tifying the flow-to-flow similarity of network communication

graphs. The evaluation of this approach verifies its capability

to effectively detect existing and stealthy attacks in large-scale

networks, as its profile involves communication patterns that

can be extracted by constructing the communication graph.

This approach also does not require any prior information

about attack observations, which shows the efficiency of its

application in online systems without much effort required in

the training phrase.

On the other hand, in current networks, some types of

attacks such as spyware and stealthy attacks attempt mimick-

ing benign activities. The graph similarity representation aims

to find small variations in communication patterns between

benign and attack flows; however, the communication patterns

of current sophisticated attacks such as SSH-Patator and FTP-

Patator are sometimes similar to those of benign flows.

V. RELATED WORK

Much work has been done on analyzing network traffic of

networked systems. A popular research direction is to adopt

deep learning-based and graph-based approaches. Generally,

these approaches aim to model different classes of activity

(i.e., benign/attack) based on some algorithm that is trained

on real data.

A. Network Flow-Based Attack Detection

Network attack detection systems have been proposed for

mitigating attacks. However, due to high speeds and large size

of current networks, this methodology still faces the challenge

of building a scalable, adaptable, and effective attack detection

system.

Network traffic analysis approaches to establishing such

a system have been recommended in many studies. For in-

stance, Nasr et al. [11] proposed a compressive traffic analysis

approach to scalable traffic analysis and then applied such

compressive traffic analysis to two widely studied classes of

traffic analysis, namely, flow correlation and website finger-

printing. Experiments showed that the state-of-the-art flow

correlation and website fingerprinting schemes outperformed

their traditional alternatives. Yao et al. [12] proposed methods

of deep graph feature extraction to distinguish network attacks

in network flows.

B. Graph Kernel

Several surveys have explored graph kernel studies [13]. In

this research, we focus on the utilization of graph kernels in

the design of graph comparison.

In general, defining the features of the complicated structure

of graphs is a difficult problem for researchers. However,

the kernel-based machine learning framework provides an

alternative systematic approach to this problem. Kernel-based

methods do not rely on feature generation required by tradi-

tional feature-based methods. The graph kernel uses a kernel

function defining the similarity between two graphs. The

kernel function maps the input graph space into the feature

space.

A kernel-based method also needs a kernel machine, which

is an algorithm that needs only kernel function values to

learn patterns of the input graphs in the feature space. The

performance of kernel-based methods depends significantly

on the selection and design of kernel functions for different

applications. [14]

In graph-structured data, graph kernels, including the Lapla-

cian kernel [15], diffusion kernels [16] and the marginalized
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TABLE III
EVALUATION OF EFFECTIVENESS IN COMPARISON WITH RANDOM FORESTS. THE BEST PERFORMANCE FOR EACH DATASET IS SHOWN IN BOLDBOLDBOLD.

Dataset Random Forests Method in [10] Our Method (STDeepGraph)
Name ACC PR DR FAR ACC PR DR FAR

UNSW-NB15 0.935 0.860 0.836 0.164 0.9860.9860.986 0.9780.9780.978 0.9560.9560.956 0.0440.0440.044

CIC-IDS-2017 0.982 0.986 0.947 0.053 0.9940.9940.994 0.9930.9930.993 0.9860.9860.986 0.0130.0130.013

kernel [17], are designed to capture features of graphs. They

have been widely used in behavior learning on communication

networks or network flows. Graph kernels have also been

applied to graph classification (to classify communication

patterns or malicious behavior). In these models, graphs are

decomposed into their substructures such as nodes, links,

random walk paths [18], limited-sized subgraphs [19], and

shortest paths [20]. A recently proposed effective class of

graph kernels is Weisfeiler-Lehman (WL) kernels [21]. This

approach involves subsequent aggregation of substructure sim-

ilarities to represent graph similarity.

Several methods have been developed to perform graph

embedding for the purpose of dimensionality reduction of

high-dimensional data. Yan et al. [22] surveyed a list of such

methods, including the principal component analysis, the lin-

ear discriminant analysis, multidimensional scaling, locality-

preserving properties and kernel eigenmaps.

C. Hybrid Deep Neural Network

Our proposal in Section III was inspired by the hybrid deep

neural network method.

Deep learning has achieved breakthroughs in image and

video analysis. In particular, convolutional neural networks

(CNNs) for image and video recognition and recurrent neural

networks (RNNs) for speech and natural language processing

(NLP) often deliver unprecedented levels of performance [23].

CNNs and RNNs extract data-driven features from input data

(e.g., image, video, and audio data) structured in typically

low-dimensional regular grids. Such grid structures are often

assumed to have statistical characteristics to facilitate the

modeling process.

The combination of CNN and LSTM in a unified framework

has already achieved state-of-the-art results in many research

areas. To combine and fully make use of spatial features,

some researchers use CNNs to capture adjacent relations in

the communication network, along with using RNN over

the time dimension. However, the application of the normal

convolutional operation restricts the model to processing only

grid structures (e.g., images and videos) rather than being

applicable to general domains. Additionally, recurrent net-

works for sequence learning require iterative training, which

introduces error accumulation as the number of steps increases.

Some studies have explored the hybrid approach. Wang et al.

combined LSTM and CNN for a hierarchical spatial-temporal

features-based attack detection system that first learned the

low-level spatial features of network traffic using CNN and

then learned high-level temporal features using an LSTM

network. Yuan et al. [24] proposed a convolutional LSTM

network to identify insiders’ anomalous behavior.

VI. CONCLUSIONS

In this paper, we proposed a novel method called STDeep-

Graph for enhancing long-term network attack detection based

on the similarity feature of the communication graph and

hybrid deep learning, which involves extraction by graph

kernels and decomposition by graph signal processing.

It has been shown that the proposed long-term network

attack detection method performs significantly better than the

other baseline methods, as evidenced by the higher accuracy

and detection rate values. Moreover, our results show that

network activity can be described by a temporal communi-

cation graph model, and this model can be highly robust

and therefore capable of reducing false alarm rates. We show

that STDeepGraph provides a good use case for the general

strategy of combining the strengths of graph embedding and

hybrid deep learning approach, which we believe will become

common in many other network analysis tasks.
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