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Abstract—Flow-based network attack detection technology is
able to identify many threats in network traffic. Existing tech-
niques have several drawbacks: i) rule-based approaches are
vulnerable because it needs all the signatures defined for the
possible attacks, ii) anomaly-based approaches are not efficient
because it is easy to find ways to launch attacks that bypass
detection, and iii) both rule-based and anomaly-based approaches
heavily rely on domain knowledge of networked system and
cyber security. The major challenge to existing methods is to
understand novel attack scenarios and design a model to detect
novel and more serious attacks.

In this paper, we investigate network attacks and unveil the
key activities and the relationships between these activities. For
that reason, we propose methods to understand the network
security practices using theoretic concepts such as graph kernels.
In addition, we integrate graph kernels over deep learning
architecture to exploit the relationship expressiveness among
network flows and combine ability of deep neural networks
(DNNs) with deep architectures to learn hidden representations,
based on the communication representation graph of each
network flow in a specific time interval, then the flow-based
network attack detection can be done effectively by measuring
the similarity between the graphs to two flows. The proposed
study provides the effectiveness to obtain insights about network
attacks and detect network attacks. Using two real-world datasets
which contain several new types of network attacks, we achieve
significant improvements in accuracies over existing network
attack detection tasks.

Index Terms—Network attack detection, graph Kkernel, deep
learning architecture

I. INTRODUCTION

With the advent of the Internet, networked systems and
applications get increasingly more complex than ever before
and become an important part of our society in almost all
areas. In today’s cyberspace, most cyber-criminals utilize net-
work resources to conduct their malicious activities. Moreover,
recent advanced attacks tend to involve multiple hosts to
conceal malicious behaviors of real attackers by using cross-
host and multi-step attack methods. For instance, distributed
link-flooding attacks are effective DDoS attacks that deplete
the bandwidth of certain network links by using multiple bots
with real IP addresses to direct low-intensity flows to multiple
targets [1]. On the one hand, an attacker may make use of a

j5C0rr€:sp0nding author: yaoyepeng @iie.ac.cn

large number of entities for an attack. On the other hand, siz-
able networks may yield too many probable attack targets [2].
The battle against these kinds of network attacks is becoming
more difficult, since they send low-intensity, individual flows
that are identical and unable to distingushed from legitimate
flows. Therefore, improving the design of current flow-based
network attack detection models to make them more suitable
for providing flexible network attack detection is urgent.

Cross-host network attacks have been the major kind of
network attack in nowadays. These attacks that are the main
threats for security over the Internet have caused special
attention. However, investigating and detecting network at-
tacks across multiple hosts is still challenging. Traditionally,
the network security community has focused on measuring
network traffic information and detecting attacks by using a
number of statistical techniques. At the same time, network
communication flows can be manipulated to impact the quality
of services or conceal malicious activities that can compromise
network security. Unfortunately, existing flow-based network
attack detection methods are inadequate to figure out the
relationship and impact of cross-host attacks.

In recent years, deep learning and graph kernels are two
emerging learning techniques that are able to facilitate the
efficiency of network attack detection approaches for secur-
ing networks. Deep learning can represent a network attack
detection task, e.g., generating embedding for a network flow,
as a neural network whose parameters can be trained end-
to-end, so that it depends upon as limited cyber security
domain knowledge as possible. Graph kernels can capture and
compare structural information from network communication
representation graphs effectively. In order to take most the
advantages of both techniques, there is a bunch of research
work devoting to developing attack detection methods lever-
aging deep learning and graph kernels. However, rare effort is
made to enhance the design of current detectors to make full
use of those two advanced techniques.

Recent research has shown that these requirements are
not adequately tackled in previous researches. Requirements.
We briefly describe two of the requirements for network
attack detection that we will address in this work. First, the
requirement that we can immediately notice is to capture and
compare structural information. Just considering individual
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Fig. 1. Network flow data with structural information and contextual
information.

nodes or edges with their attributes separately is not enough.
Instead of learning representations for just the nodes of the
graph, like [3], our work focus on learning a feature rep-
resentation for the structural information of subgraphs. The
above mentioned work can not be applied directly to our work.
Second, only considering the structural information without
the context is insufficient to distinguish whether a network
flow is triggered with or without other attack flows, as shown
in Fig. 1. It is meaningful for the detection approach to capture
and compare the contextual information to make the attack
detection approach more accurate.

Although current graph kernels could meet the first require-
ment finely, the second requirement which is more domain-
specific and challenging. Some recent work study deep learn-
ing on graphs to capture the contextual information as well
as structural information. However there are still many un-
explored issues in conducting deep learning to handle various
directed attributed graphs like network communication graphs.
Taking network communication graphs as inputs to a deep
neural network requires represent graphs as feature vectors in
a way preserving the communication relationships and flow
contextual information.

Inspired by the advantages of deep learning and graph
kernels, in this paper, to research on recent network attack
trends and perform efficient flow-based network attack detec-
tion, we investigate several new types of network attacks and
propose the integrated use of deep learning and graph kernels
to understand the network attacks. Our goal is to make a
step towards accurate attack detection through both structural
and contextual information that overcomes the inaccuracy of
current methods. Further, we propose an integrated framework
to achieve network attack detection.

Contributions. Facing the aforementioned requirements, in
this paper, we propose and develop a novel network attack
detection framework. The main contributions of this paper are
as follows:

o We provide an in-depth understanding that graph kernels
offer an elegant way to capture the heterogeneity and
similarity of network attacks and enable the detection
design at the deep learning model.

o We design a novel framework to detect malicious flows
and improve the accuracy of network attack detection
process, by integrating graph kernels and deep learning
into an end-to-end architecture.

e We perform an in-depth evaluation to evaluate the ef-
ficacy of network attack detection. After evaluating our
framework on two real-world datasets, we demonstrate
that the proposed framework effectively outperforms the
traditional machine learning methods and baseline deep
neural network methods in terms of accuracy.

The rest of the paper is organized as follows. Section II
presents the preliminaries of this work and describes several
case studies. The proposed attack detection framework is
discussed in Section III followed by the empirical evaluation in
Section IV. A summary of some previous work related to this
paper are provided in Section V. At last, Section VI concludes
this paper.

II. PRELIMINARIES AND CASE STUDIES

Since this work is directed towards understanding the in-
fluence of graph kernels on deep learning by taking several
novel network attacks in flow-based data as use cases, we
first describe the problem and analyze new trend of attacks in
more detail. Then, we elaborate on a study on some network
attack cases discovered in our research. Further, we analyze
the techniques the attacker employ in the network attacks from
the network communication perspectives.

A. Problem Definition

In particular, we focus on capturing structural information
of flow-based network traffic data and address the issue of
calculating structural similarity between network flows.

The key point in the problem is a proper definition of
flow context. This relies on directional flow-based data. Flows
describe statistical information on communications between
hosts and typically include Source IP, Source Port, Destination
IP, Destination Port, Protocol, Bytes, Packets, TCP-Flags,
Timestamp and Duration as flow meta features. Given a set
of network flows, existing methods have the ability to detect
several kinds of malicious network flows, but some kinds
of attacks can be evaded by modifying several flow meta
features. Indeed, different structural information in different
communication graphs are correlated. For example, when the
flows come from the similar sources and go towards the similar
destinations.

Given a directed attributed graph G < V, E >, the purpose
of the network attack detection is to relate a set of hosts
to a set of vertices. As described in [1], an attack at time
step ¢ attacks a set of host Hyitack(t) € H, influencing the
quality of a set of vertices Vyiack(t) € V. The goal of the
attack detection is to find the malicious host set and detect the
malicious communication edges until time step ¢ + a.

Assume that p(h;) expresses the probability of h acting
as a malicious host at time step ¢, p(f) is the probability
of f being an attack flow at time step t, and p(h, f;) is the
probability of & sending f at time step ¢. The goal is to seek
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Fig. 2. Graph model of two types of network attacks. (a)simplified flow traces corresponding to network attacks; (b)communication graph construction for
multi-step attacks; (c)communication graph construction for low-intensity attacks.

to minimize the total possibility of p(h) over all time steps.
In the neural networks model, system needs to extract the
flow meta information about f and seek to minimize p(f).
However, attackers can do little changes to evade the single
time step detection with small effort. While it is difficult to
evade from the whole structural communication information
which graph kernels have the ability to describe, that is, graph
kernels can capture the structural similarity between p(f;) and
p(fir1) to compare p(h, f;) and p(h, fos1).

For estimating the similarity between structural communi-
cation informations on pair of communication graphs, we use
graph kernel functions. We construct a network communica-
tion graph for each traffic flow using a specific time interval
[t,t+ .

B. Case Studies

In general, understanding the motivations and operations
of several new network attack types plays a vital role in the
challenge of addressing these threats. However, understanding
how deep learning architecture work is challenging, so they
are often treated as black boxes. As looking into the trained
weights of a deep learning model may be a complicated way
to understand which type of information is more important for
the model, we decided to focus on the different communication
graph model of network attacks. Fig. 2 shows graph models
of two new types of network attacks.

1) Multi-step Attack: A multi-step attack differs from tra-
ditional one-off network attacks as it is launched in multiple
steps with a single specific malicious objective inside the net-
work, containing more than one distinct actions [4]. It involves
different steps that may not be malicious when implemented
separately, but all steps are necessary to complete successfully
network attack, as shown in Fig. 2(b). For example, Mirai [5]
begins its attack by scanning the whole Internet for devices that
run interactive sessions, such as Telnet and SSH, then attempts
to log in using default IoT passwords. Once successful, Mirai
sends the scanned addresses and associated passwords to a
collection server, which asynchronously triggers a loader to
infect the device. Infected hosts scan for additional victims
and accept attack commands from a C&C server.

The detection methods assume there are relationships
among attack flows, which suppose to be the same attack
scenario.

2) Low-intensity Attack: A low-intensity attack is launched
with sending legitimate, low-intensity traffic flows towards
attack targets. It could compute a large set of IP addresses
whose advertised routes cross the same link, and then direct
its bots to send low-intensity traffic to those addresses, as
shown in Fig. 2(c). For example, link-flooding attacks [1] [6]
seek to block the paths connecting to the target. The attacker
first constructs a link-map around the target, then the attacker
floods critical links by sending traffic to decoy servers. Finally,
all paths from the target to the gateways are cut-off because
of link congestion.

The goal of the detection methods is to keep the network
running without any blocked links and to discover probable
targets and attackers. Therefore, the flow meta information on
the network should be detected and the incoming flows to
different destinations should be analysis to expose probable
attackers and their target.

III. INTEGRATED MODEL OF GRAPH KERNELS AND DEEP
LEARNING

In this section, we propose a framework to integrate graph
kernels into deep learning architecture for improving flow-
based network attack detection. Since we observe that ex-
isting graph kernels, such as shortest path kernel, capture
the structural information well but fail to capture contextual
information, we employ a LSTM fully convolutional networks
on time axis. We give an overview of the architecture of the
framework in Fig. 3.

A. Framework Architecture Overview

To take full advantage of structural features, convolutional
neural network (CNN) could be adopted to capture adjacent
relations among the network flows, along with employing
recurrent neural network (RNN) on time axis.

The fully convolutional networks are effective learning
models for time series analysis problems [7]. In our proposed
framework, the fully convolutional block is blended by a basic
LSTM block followed by dropout and the fully convolutional
block consists of three stacked convolutional blocks. The
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Fig. 3. Overview of the Network Attack Detection by

architecture of the proposed framework can be seen in Fig.
3.

B. Graph Structural Information Extraction

The task in this stage is to extract a graph kernel matrix
that is computationally inexpensive to compute and is length-
independent of the complexity of the network. Kernel method
is an effective approach to learn graph data similarity by
computing an inner product as the similarity matrix between
two graphs. A matrix of pairwise communication structural
similarities is created from the communication graphs.

We selected shortest path kernels [8] which captured diverse
aspects of the network communication and are efficiently
computable, for the reason that shortest path kernels compare
the sorted hosts and the length of shortest path that are com-
mon between two graphs. The shortest path d(i, j) represents
the distance of the shortest path from ¢ to j, reflecting the
expectation that nodes with low degrees of separation are
likely to interact. In a communication graph context, the
shortest path can also encode the structural information of two
hosts sending or receiving from each other over time.

The kernel matrix K, corresponds to a directed attributed
graph, where the network hosts are the vertices and the flow
meta features are the edge attributes. For each pair of graphs
Gy and G, with S; < V, E > and S, < V', E’ >, the shortest

path kernel is defined as:
Kep(Gi,G) = S ke )
ecE e’ €E’

<<Psp(gz QDSP gg
where « is shortest path kernel defined on the edges of S; and
So, which measures the similarity between local sub-structures
centered at e and ¢’.

C. Integrating Graph Kernels and Deep Learning

The fully convolutional block and LSTM block process
the network flow meta features and graph kernel matrixes,
respectively. The fully convolutional block treats the graph
kernel matrixes as a time interval with various of communi-
cation records. Given a time interval of length «, the fully
convolutional block will receive the graph constructed by

Integrating Graph Kernels and Deep Learning Framework

network flows in « time interval. In contrast, the LSTM block
in the proposed framework receives the network flows with a
single time step.

The fully convolutional block consists of three stacked
convolutional blocks, and then the global pooling is applied
after the final convolutional block. At the same time, the
network flow meta features are conveyed into a LSTM block.
The output of the global pooling layer and the LSTM block
is concatenated and passed to a softmax classification layer.

IV. EVALUATIONS

We further evaluate our graph kernels and deep learning
integration model on the UNSW-NBI15 [9] and CIC-IDS-2017
[10] datasets, respectively. The dataset statistics are shown in
Table I. Further, we adopt an algorithm called t-SNE [11]
for visualizing high dimensional graph kernel spaces in two-
dimensional spaces, to illustrate the calculated graph structural
similarities.

A. Datasets

UNSW-NBI15 Dataset: This dataset is created by establish-
ing a synthetic environment at the UNSW cybersecurity lab.
The data presents a mixture of the real modern normal and
the contemporary synthesized attack activities of the network
traffic. It had 47 features including new low-footprint attack
scenarios and 9 significant series of the cyberattack. We
select only 8 network flow meta features from this datasets,
namely dur, sbytes, dbytes, Sload, Dload, Spkts, Dpkts, Sintpkt,
Dintpkt.

CIC-IDS-2017 Dataset: This dataset is a newer dataset that
contains a more recent form of attacks such as high-intensity
high level layer attacks generated using botnets and low-
intensity attacks generated using Slowloris tool. We select only
8 network flow meta features from this datasets, namely Flow
Duration, Total Fwd Packets, Total Backward Packets, Total
Length of Fwd Packets, Total Length of Bwd Packets, Flow
Bytes/s, Flow Packets/s, Average Packet Size.

Both the two datasets have ground truth of the network
flows. We divide it into training and test data sets using a
ratio of 60% to 40%. The whole prototype is deployed on the



Ubuntu 16.04 64-bit OS. Python3, Keras library and Scikit-
learn library are used as the software frameworks.

For evaluation, we report precision, recall, and F}-measure
for the attack detection results achieved by all methods. Every
experiment was conducted on a DELL R720 server consisting
of a 16 CPU cores with 128 GB of RAM and NVIDIA Quadro
GPU.

TABLE 1
DATASET STATISTICS
Name # Catigeries | # Instances | Attack Flow Ratio
UNSW-NBI15 10 2,540,044 0.145
CIC-IDS-2017 15 2,830,743 0.167

We implemented a proof-of-concept version of the proposed
framework (see Section III). To training the deep learning
method, we set the batch size to 128, and the learning rate
is set to 0.001. The epochs of training as 50, and the dropout
rate is set to 0.5. The time interval ¢ is 60s.

B. Experimental Design

We conduct three experiments: deep neural network mod-
els as baseline, integrating graph kernels at input level of
deep neural network models, and integrating graph kernels
at output level of deep neural network models on two real-
world datasets. We select 60 seconds as the time window
to reconstruction communication graph as it was shown as
a suitable classification point. All experiments were repeated
10 times and we report the means of evaluation matrixes
for all algorithms. The best results are underlined. For the
compared methods, the LSTM and CNN deep neural networks
are considered as baselines. To provide a better overview of the
performance of the baseline approach on the statistical network
flow features, the overall precision, recall and F}-measure are
presented in Table II.

Both the datasets are divided into two sets: training set and
test set, which are the mixture of both attacks and benign
flows. Then, an integrated model is trained to predict on
the training set and the prediction errors on the training set
are fit to a multivariate Gaussian using maximum likelihood
estimation. The loss function that we use is the sigmoid cross
entropy. The threshold for discriminating between attacks and
benign values is then determined via maximizing the accuracy
value with respect to the threshold. At last, the trained model is
then used to predict on the test set and the results are recorded
and compared.

C. Graph Structural Information Statistics and Visualization

To evaluate the influence of communication structural in-
formation extracted by graph kernels, we use the learned
representations as input for a statistical analysis approaches,
and then a qualitative analysis based on t-SNE visualizations.

First, we extract graph structural information from both
datasets, respectively, and select 100 records for each at-
tack categories randomly. Then, we measure the statistical
distributions. Fig. 4 shows the distributions of the graph

structural information. As we can see from the figure, the
graph structural information has a good distinguish ability,
especially for Denial of Service (DoS) and PortScan attacks.
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Fig. 4. The statistical measurement for graph structural information of the
two datasets.

Also, we visualize the extract information using the t-SNE
algorithm. Fig. 5 illustrates the visualization results. It is
observed that the diversities of representation on both datasets
are prominent, where some of the intra-class distance can
be larger than the inter-class distance and the distribution is
heterogeneous.

D. Performance on Deep Learning with Graph Kernels

To understand necessity of graph kernels, we further mea-
sured the performance of the proposed framework.

Table II details the results of the experiments. From the re-
sults, we can see that our framework significantly outperforms
baseline methods. We also compare the detection accuracy on
the network attack detection task against the random forests
classifier proposed in [10] and [12].

After training and obtaining representations of network flow
meta features and graph kernels, the results of precision,
recall and F)-measure are shown in Table II, respectively,
which we can observe the proposed framework is consistently
above baseline methods, and achieves statistically significant
improvements on all metrics. As can be seen, compared
with the baseline deep learning architecture, the proposed
framework improve the precision by 1.2%-2.2% on UNSW-
NB15 and 3.4%-12.4% on CIC-IDS-2017, as well as improve
the recall by 0.2%-9.6% on UNSW-NB15 and 2.6% on CIC-
IDS-2017. Therefore, we can draw the conclusion that the
proposed framework maintains a more decent performance in
attack detection tasks compared with other methods.
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TABLE 11

Evaluation
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F-measure

CNN Baseline
LSTM Baseline
Our Framework

0.967
0.977
0.989
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Fig. 5. The t-SNE visualization for graph structural information of the two
datasets.

V. RELATED WORK

In this section, we discuss the existing research on network
attack detection techniques and categorize as follows:

A. Flow-based Network Attack Detection

Traditional network attack detection methods use deep
packet inspection (DPI) to detect malicious activity in the
network traffic. However, DPI becomes unsuitable for high-
speed network links. Also, the DPI is not practical when most
packet content is encrypted. Due to the limitations of the DPI-
based attack detection systems, researchers are focusing on
flow-based attack detection systems [13]. Since only the flow
records are considered, flow-based attack detection process is
efficient and independence from encrypted payload.

Winter et al. [14] propose a flow-based intrusion detection
method using SVM based one-class classification. After train-
ing, the one-class SVM detects the malicious flows with a false
alarm rate of 2%. Casas et al. [15] propose an unsupervised
network intrusion detection system capable of detecting un-
known network attacks to detect the malicious flows and the
evaluation results show that their method is well performed
on MAWI and KDD99 datasets. Hajisalem et al. [16] propose
a new hybrid network attack classification method based on
Artificial Bee Colony and Artificial Fish Swarm algorithms
and their experimental results on NSL-KDD and UNSW-NB15
datasets demonstrate that the proposed method outperforms in
terms of performance metrics and can achieve 99% detection
rate and 0.01% false positive rate.

B. Deep Neural Network based Network Attack Detection

Deep learning has been shown tremendous performance on
a variety of application areas, such as image, speech and
video analysis tasks, while they are high-dimensional inputs
and have high computational requirements. For network attack
detection, deep neural networks increase the detection rate of
known attacks and reduce the false positive rate of unknown
attacks.

Alom et al. [17] train deep belief network models for iden-
tifying any kind of unknown attack in dataset and evaluated
the performance on intrusion detection. Their proposed system
not only detects attacks but also classifies them and achieves
97.5% accuracy for only fifty iterations. Alrawashdeh et al.
[18] explore the attack detection capabilities on various kinds
of deep learning architectures. They outperform the former
works in both detection speed and accuracy and achieve
a detection rate of 97.9% presenting machine learning ap-
proaches for predicting attacks with reasonable understanding.
Zhang et al. [19] propose a specially designed CNN to detect
web attacks. They found only some preprocessing is needed
whereas the tedious feature extraction is done by the CNN
itself and the experimental results show that the designed
CNN has a good performance. Chawla et al. [20] use RNN as
their model for host-based intrusion detection systems which
determine normal behavior based on sequences of system calls.

C. Graph based Network Attack Detection

The ability to exploit the potential relationships of commu-
nication patterns in network traffic has been the focus of many
existing studies. Several graph-based and machine learning
techniques have been investigated over the last two decades
for detecting network attack detection [21].



Chen et al. [22] propose a spectral decomposition approach
for single graph analysis that integrate multiple features,
containing graph walk statistics, centrality measures and graph
distances to reference nodes. When applying to network attack
detection, their approach can effectively indicate anomalous
connectivity pattern and provide discriminative basis for attack
classification. Yao et al. [23] proposed an effective method
for deep graph transfer feature extraction to classify network
attack based on network flows.

VI. CONCLUSIONS

Graph kernels and deep learning have been successfully
applied to many graph based attack detection techniques. In
this paper, we present a novel framework of performing deep
learning on the network communication graph by coupling
graph kernels and convolutional based neural network design.
We have implemented a prototype of the proposed framework
and evaluated it on two real-world network traffic traces.
Our evaluation results have demonstrated the accuracy of the
proposed framework. Our research also shows a successful
integrated application of deep learning and graph kernels on
computer security problems.
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